

Hilti HIT-RE 500 mortar with rebar (as post-installed connection)

Service temperature range

Temperature range: -40°C to +80°C (max. long term temperature +50°C, max. short term temperature +80°C).

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European technical approval	DIBt, Berlin	ETA-08/0105 / 2014-04-30
European technical approval	DIBt, Berlin	ETA-04/0027 / 2013-06-26
DIBt approval	DIBt, Berlin	Z-21.8-1790 / 2009-03-16
Fire test report	IBMB Braunschweig	3357/0550-5 / 2002-07-30
Assessment report (fire)	Warringtonfire	WF 327804/B / 2013-07-10

^{a)} All data given in this section according to the approvals mentioned above, ETA-08/0105 issue on 2014-04-30 and ETA-04/0027 issue on 2013-06-26.

Materials

Reinforcmenent bars according to EC2 Annex C Table C.1 and C.2N.

Properties of reinforcement

Product form		Bars and de-coiled rods				
Class		B C				
Characteristic yield strength	n f _{yk} or f _{0,2k} (MPa)	400 to	o 600			
Minimum value of $k = (f_t/f_y)_k$	t	≥ 1,08 ≥ 1,15 < 1,35				
Characteristic strain at max	imum force, ε _{uk} (%)	≥ 5,0	≥ 7,5			
Bendability		Bend / Re	bend test			
Maximum deviation from nominal mass (individual bar) (%)	Nominal bar size (mm) ≤ 8 > 8	± 6,0 ± 4,5				
Bond: Minimum relative rib area, f _{R,min}	Nominal bar size (mm) 8 to 12 > 12	0,040 0,056				

Setting details

For detailed information on installation see instruction for use given with the package of the product.

Curing time for general co	onditions												
	Data according ETA-08/0105, issue 2014-04-30												
Temperature of the base material	Working time in which rebar can be inserted and adjusted t _{gel}	Initial curing time t _{cure,ini}	Curing time before rebar can be fully loaded t _{cure}										
$5 \degree C \le T_{BM} < 10 \degree C$	2 h	18 h	72 h										
$10 \degree C \le T_{BM} < 15 \degree C$	90 min	12 h	48 h										
$15 \degree C \le T_{BM} < 20 \degree C$	30 min	9 h	24 h										
20 °C ≤ T _{BM} < 25 °C	20 min	6 h	12 h										
$25 \degree C \le T_{BM} < 30 \degree C$	20 min	5 h	12 h										
$30 \degree C \le T_{BM} < 40 \degree C$	12 min	4 h	8 h										
T _{BM} = 40 °C	12 min	4 h	4 h										

Curing time for general conditions

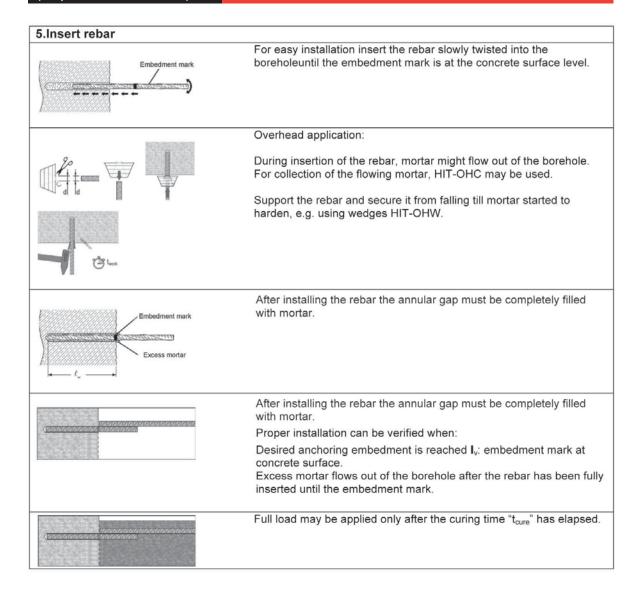
For dry concrete curing times may be reduced according to the following table. For installation temperatures below +5 °C all load values have to be reduced according to the load reduction factors given below.

Curing time for dry concrete

	Additional Hilti technical data											
Temperature of the base material	Working time in which rebar can be inserted and adjusted t _{gel}	Initial curing time t _{cure,ini}	Reduced curing time before rebar can be fully loaded t _{cure}	Load reduction factor								
T _{BM} = -5 °C	4 h	36 h	72 h	0,6								
T _{BM} = 0 °C	3 h	25 h	50 h	0,7								
T _{BM} = 5 °C	2 ½ h	18 h	36 h	1								
T _{BM} = 10 °C	2 h	12 h	24 h	1								
T _{BM} = 15 °C	1 ½ h	9 h	18 h	1								
T _{BM} = 20 °C	30 min	6 h	12 h	1								
T _{BM} = 30 °C	20 min	4 h	8 h	1								

T _{BM} = 40 °C	12 min	2 h	4 h	1						
Setting instruction										
Safety Regulations:	proper and s Wear well-fit working with Important: C	Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with Hilti HIT-RE 500. Important: Observe the installation instruction of the manufacturer provided with each foil pack.								
1. Drill hole	(see Annex B1)		onized concrete; cl ill hole shall be fille							
	sized Hilti TI attachment. This drilling during drillin After drilling in the instruc	E-CD or TE-YD f system removes g when used in a is complete, pro ctions for use.		lilti vacuum s the bore hole						
e.commerce.	with carbid o drill or a dia	frill bit set in rota mond core mach	tion hammer mode ine.	, a compressed air						
	Hammer dril	(HD) Con (CA		Diamond core vet (DD) and dry (PCC)						
4. Bore hole cleaning	The borehole mu other contaminar	(Not needed with Hilti TE-CD and Hilti TE-YD drill bit) The borehole must be free of dust, debris, water, ice, oil, grease and other contaminants prior to mortar injection.								
			bore hole must be hods described be							
Compressed air cleaning (CAC)										
2×	bar at 100 lii noticeable d supply a mir If required u	tres per minute (l ust. Bore hole d himum air flow of	₋PM)) until return a iameter ≥ 32 mm th 140 m³/hour. essories and exten	ompressed air (min. 6 ir stream is free of ne compressor must asions for air nozzle						
en []	Brushing									
2x	by inserting motion. The anchor hole.	the round steel b brush shall prod	rush to the back of uce natural resistan case, please use a	such $\emptyset \ge$ borehole \emptyset) the hole in a twisting nee as it enters the new brush or a						
	Blowing									
	noticeable d If required u	ust.		ir stream is free of sions for air nozzle						

2x 33%	
min. 2x	Deep boreholes – Blowing
	For boreholes deeper than 250mm (for Ø=8mm – 12mm) or deeper than 20 Ø (for Ø>12mm) use the appropriate air nozzle Hilti HIT-DL
	Safety tip: Do not inhale concrete dust.
	The application of the dust collector Hilti HIT-DRS is recommended.
000000000000	Deep boreholes – Brushing
	For boreholes deeper than 250 mm (for Ø=8mm – 12mm) or deeper than 20 Ø (for Ø>12mm) use machine brushing and brush extensions HIT-RBS.
	Screw the round steel brush HIT-RB in one end of the brush extension(s) HIT-RBS, so that the overall length of the brush is sufficient to reach the base of the borehole. Attach the other end of the extension to the TE-C/TE-Y chuck.
	Safety tip:
	 Start machine brushing operational slowly. Start brushing operation once brush is inserted in borehole.
2x T	In addition for wet diamond coring (DD):
C U	For wet diamond coring please observe the following steps in addition prior to compressed air cleaning:
	Remove all core fragments from the anchor hole. Flush the anchor hole with clear running water until water runs clear. Brush the anchor hole again 2 times with the appropriate sized brush over the entire depth of the anchor hole. Repeat the flushing process until water runs out of the anchor hole.



Manual Cleaning (MC) Manual clear 20mm and depths I_v resp. $I_{e,ges.} \le 16$	aning is permitted for hammer drilled boreholes up $to hole diameters d_0 \le 50$ mm.
	Blowing 4 strokes with Hilti blow-out pump from the back of the hole until return air stream is free of noticeable dust.
	Brushing 4 times with the specified brush HIT_RB size (brush $\emptyset \ge$ borehole \emptyset) by inserting the round steel wire brush to the back of the hole with a twisting motion. The brush shall produce natural resistance as it enters the anchor hole. If this is not the case, please use a new brush or a brush with a larger diameter.
27 - 4x	Blowing 4 strokes with Hilti blow-out pump from the back of the hole until return air stream is free of noticeable dust.
	Manual Cleaning (MC)
	Hilti hand pump recommended for blowing out bore hole with diameters d<20mm and bore hole depth h_0 <160mm
3.Rebar preparation and foil pa	ick preparation
	Before use, make sure the rebar is dry and free of oil or other
	residue. Mark the embedment depth on the rebar. (e.g. with tapte) , I_ν Insert rebar in borehole, to verify hole and setting depth I_ν resp. $I_{e,ges}$
	 Observe the Instruction for Use of the dispenser and the mortar. Tightly attach Hilti HIT-RE-M mixing nozzle to foil pack manifold. Insert foil pack into foil pack holder and swing holder into the dispenser.
	Discard initial mortar. The foil pack opens automatically as dispensing is initiated. Depending on the size of the foil pack an initial amount of adhesive has to be discarded. After changing a mixing nozzle, the first few trigger pulls must be discarded as decribed above. For each new foil pack a new mixing nozzle must be used. Discard quantities are 3 strokes for 330 ml foil pack, 4 strokes for 500 ml foil pack,

4.Inject mortar into borehole Forming air pockets be avoided 4.1 Injection method for borehole depth ≤ 250 mm Inject the mortar from the back of the hole towards the front and slowly withdraw the mixing nozzle step by step after each trigger pull. Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the rebar and the concrete is completely filled with adhesive over the embedment length. After injecting, depressurize the dispenser by pressing the release trigger. This will prevent further mortar discharge from the mixing nozzle. 4.2 Injection method for borehole depth > 250 mm or overhead application Assemble mixing nozzle HIT-RE-M, extension(s) and piston plug HIT-SZ. Piston plug Injection extension For combinations of several injection extansions use coupler HIT-VL HIT-SZ HIT-VL K. A substitution of the injection extansion for a plastic hose or a combination of both is permitted. The combination of HIT-SZ piston plug with HIT-VL 16 pipe and then HIT-VL 16 tube support proper injection. Mark the required mortar level Im and embedment depth Ib resp. Ie.ges with tape or marker on the injection extension. Mortar level mark Insert piston plug to back of the hole. Begin injection allowing the pressure of the injected adhesive mortar to push the piston plug towards the front of the hole. Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the rebar and the concrete is completely filled with adhesive over the embedment length. Injection until the morat level mark Imbecomes visible. After injecting, depressurize the dispenser by pressing the release trigger. This will prevent further mortar discharge from the mixing nozzle.

Fitness for use

Some creep tests have been conducted in accordance with ETAG guideline 001 part 5 and TR 023 in the following conditions : in dry environnement at 50 $^{\circ}$ C during 90 days.

These tests show an excellent behaviour of the post-installed connection made with HIT-RE 500: low displacements with long term stability, failure load after exposure above reference load.

Categories	Chemical substances	resistant	Non resistant
Alkeline preducte	Drilling dust slurry pH = 12,6	+	
Alkaline products	Potassium hydroxide solution (10%) pH = 14	+	
	Acetic acid (10%)		+
Acido	Nitric acid (10%)		+
Acius	Hydrochloric acid (10%)		+
	Sulfuric acid (10%)		+
	Benzyl alcohol		+
	Ethanol		+
Acids Categories Ikaline products Categories Ikaline products Categories Ikaline products Categories Ikaline products Ikaline products Categories Ikaline products Ikaline produ	Ethyl acetate		+
	Methyl ethyl keton (MEK)		+
	Trichlor ethylene		+
	Xylol (mixture)	+	
	Concrete plasticizer	+	
	Diesel	+	
kaline products	Engine oil	+	
	Petrol	+	
	Oil for form work	+	
	Sslt water	+	
ikaline products cids olvents	De-mineralised water	+	
	Sulphurous atmosphere (80 cycles)	+	

Resistance to chemical substances

Electrical Conductivity

HIT-RE 500 in the hardened state **does not conduct electrically**. Its electric resistivity is $66 \cdot 10^{12} \Omega$.m (DIN IEC 93 – 12.93). It is adapted well to realize electrically insulating anchorings (ex: railway applications, subway).

Drilling diameters

8 10		Drill bit diameters d	[mm]			
Rebar (mm)	Hammer drill (HD)	Compressed air	Diamond coring			
	Hollow Drill Bit (HDB)	drill (CA)	Wet (DD)	Dry (PCC)		
8	12 (10 ^{a)})	-	12 (10 ^{a)})	-		
10	14 (12 ^{a)})	-	14 (12 ^{a)})	-		
12	16 (14 ^{a)})	17	16 (14 ^{a)})	-		
14	18	17	18	-		
16	20	20	20	-		
18	22	22	22	-		
20	25	26	25	-		
22	28	28	28	-		
24	32	32	32	35		
25	32	32	32	35		
26	35	35	35	35		
28	35	35	35	35		
30	37	35	37	35		
32	40	40	40	47		
34	45	42	42	47		
36	45	45	47	47		
40	55	57	52	52		

a) Max. installation length I = 250 mm.

Basic design data for rebar design according to rebar ETA

Bond strength in N/mm² according to ETA 08/0105 for good bond conditions for hammer drilling, compressed air drilling, dry diamond core drilling

Dehen (mm)	Concrete class												
Rebar (mm)	") C12/15 C16/2		C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60				
8 - 32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3				
34	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2				
36	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1				
40	1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0				

Bond strength in N/mm² according to ETA 08/0105 for good bond conditions for wet diamond core drilling

Deher (mm)		Concrete class												
Rebar (mm)	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60					
8 - 25	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3					
26 - 32	1,6	2,0	2,3	2,7	2,7	2,7	2,7	2,7	2,7					
34	1,6	2,0	2,3	2,6	2,6	2,6	2,6	2,6	2,6					
36	1,5	1,9	2,2	2,6	2,6	2,6	2,6	2,6	2,6					
40	1,5	1,8	2,1	2,5	2,5	2,5	2,5	2,5	2,5					

Pullout design bond strength for Hit Rebar design

Design bond strength in N/mm² according to ETA 04/0027 (values in table are design values, $f_{bd,po}$ = τ_{Rk}/γ_{Mp}

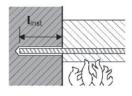
Hammer or con Water saturate	d, wa	ater fille	ed or su		jed hol	e.									
Uncracked cor	icrete	020/2	.5.				В	ar dian	neter						
temperature range		Data according to ETA 04/0027										Hilti tech data			
	8	10	12	14	16	20	22	24	25	26	28	30	32	36	40
I: 40°C/24°C		7,1			6,7		6,2						5,2	4,8	
II: 58°C/35°C		5	5,7				5,2			4,8			4,3	3,8	
III: 70°C/43°C	3,3						3,1 2,9				2	2,4			

Increasing factor in non-cracked concrete: f_{B,p}=(f_{cck}/25)^{0,1}

(f_{cck}: characteristic compressive strength on cube)

Additional Hilti Technical Data:

If the concrete is dry (not in contact with water before/during installation and curing), the pullout design bond strength may be increased by 20%.


If the hole was produced by wet diamond coring, the pullout design bond strength has to be reduced by 30%.

Reduction factor for splitting with large concrete cover: $\delta = 0,306$ (Hilti additional data)

Fire Resistance according to DIBt Z-21.8-1790

a) fire situation "anchorage"

Maximum force in rebar in conjunction with HIT-RE 500 as a function of embedment depth for the fire resistance classes F30 to F180 (yield strength f_{vk} = 500 N/mm²) according EC2^a).

Bar Ø	Drill hole Ø	Max. F _{s,T}	l _{inst}	Fire resistance of bar in [kN]				
[mm]	[mm]	[kN]	[mm]	R30	R60	R90	R120	R180
			80	2,4	1,0	0,5	0,3	0
			95	3,9	1,7	0,3	0,6	0,1
			115	7,3	3,1	1,7	1,1	0,4
8	10	16,19	150	16,2	8,2	4,6	3,1	1,4
0	10	16,19	180		16,2	10,0	6,7	2,9
			205			16,2	12,4	5,1
			220				16,2	7,0
			265					16,2
			100	5,7	2,5	1,3	0,8	0,2
			120	10,7	4,4	2,5	1,7	0,7
			140	17,6	7,8	4,4	3,0	1,3
40	12	25,29	165	25,3	15,1	8,5	5,8	2,6
10	12	25,29	195		25,3	17,6	12,2	5,1
			220			25,3	20,7	8,7
			235				25,3	11,8
			280					25,3
			120	12,8	5,3	3,0	2,0	0,8
			150	25,2	12,2	6,9	4,7	2,1
			180	36,4	24,3	15,0	10,1	4,4
12	16	36,42	210		36,2	27,4	20,6	8,5
	10		235			36,4	31,0	14,2
			250				36,4	19,1
			295					36,4
			140	24,6	10,9	6,1	4,2	1,9
			170	39,1	23,5	13,5	9,2	4,1
			195	49,6	35,6	24,7	17,1	7,2
14	18	49,58	225		49,6	39,2	31,3	13,5
			250			49,6	43,4	22,3
			265				49,6	29,5
			310					49,6
			160	39,2	21,3	11,9	8,1	3,6
			190	55,8	37,9	25,5	17,3	7,3
			210	64,8	49,0	36,5	27,5	11,3
16	20	64,75	240		64,8	53,1	44,1	20,9
	20		265			64,8	57,9	33,7
			280				64,8	42,0
			325					64,8

Bar Ø	Drill hole Ø	Max. F _{s,T}				l _{inst}		
[mm]	[mm]	[kN]	[mm]	R30	R60	R90	R120	R180
			200	76,6	54,3	38,7	27,5	11,4
			240	101,2	82,0	66,4	55,1	26,1
20	25	101,18	270		101,2	87,1	75,9	45,6
20	25	101,10	295			101,2	93,2	62,9
			310				101,2	73,2
			355					101,2
		450.00	250	139,0	111,1	91,6	77,6	39,9
			275	158,1	132,7	113,2	99,2	61,3
	30		305		158,1	139,1	125,1	87,2
25	30	158,09	330			158,1	146,7	108,8
			345				158,1	121,8
			390					158,1
			280	184,7	153,4	131,6	115,9	73,5
			295	198,3	168,0	146,1	130,4	88,0
28	35	198.3	330		198,3	180,0	164,3	121,9
28	35	198.3	350			198,3	183,6	141,2
			370				198,3	160,6
			410					198,3
20	40	250.02	320	255,3	219,6	194,7	176,7	128,2
			325	259,0	225,1	200,2	182,2	133,8
			360		259,0	238,9	220,9	172,5
32	40	259,02	380			259,0	243,1	194,6
			395				259,0	211,2
			440					259,0
			400	404,7	385,1	353,9	331,5	270,9
			415		404,7	374,6	352,2	291,6
40	47	404,71	440			404,7	386,8	326,2
			455				404,7	346,9
			500					404,7

^{a)} For tables according the standards to DIN 1045-1988, NF-ENV 1991-2-2(EC2), Österreichische Norm B 4700-2000, British-, Singapore- and Australian Standards see Warringtonfire report WF 166402 or/and IBMB Braunschweig report No 3357/0550-5.

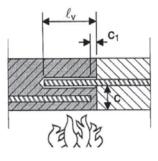
b) fire situation parallel

Max. bond stress, τ_T , depending on actual clear concrete cover for classifying the fire resistance.

It must be verified that the actual force in the bar during a fire, $F_{s,T}$, can be taken up by the bar connection of the

selected length, \mathbf{I}_{inst} . Note: Cold design for ULS is mandatory.

 $\mathsf{F}_{\mathsf{s},\,\mathsf{T}} \leq (\mathsf{I}_{\mathsf{inst}} - \mathsf{c}_{\mathsf{f}}) \cdot \varphi \cdot \pi \cdot \tau_\mathsf{T} \quad \mathsf{where:} \; (\mathsf{I}_{\mathsf{inst}} - \mathsf{c}_{\mathsf{f}}) \geq \mathsf{I}_{\mathsf{s}};$


I_s = lap length

φ = nominal diameter of bar

 $\textbf{I}_{inst}-\textbf{c}_{f}$ = selected overlap joint length; this must be at least $\textbf{I}_{s},$

but may not be assumed to be more than 80 $\boldsymbol{\varphi}$

 τ_T = bond stress when exposed to fire

Critical temperature-dependent bond stress, τ_c , concerning "overlap joint" for Hilti HIT-RE 500 injection						
adhesive in relation to fire resistance class and required minimum concrete coverage c.						

Clear concrete cover c		Max. b	ond stress, τ_c [l	N/mm²]				
[mm]	R30	R60	R90	R120	R180			
30	0,7	0						
35	0,8	0,4						
40	0,9	0,5	0					
45	1,0	0,5	1	0				
50	1,2	0,6	1					
55	1,4	0,7	0,5					
60	1,6	0,8	0,5	1	0			
65	1,9	0,9	0,6	0,4	1			
70		1,0	0,7	0,5	1			
75		1,2	0,7	0,5	1			
80		1,4	0,8	0,6	1			
85		1,5	0,9	0,7	1			
90		1,7	1,1	0,8	0,5			
95		2,0	1,2	0,9	0,5			
100			1,4	1,0	0,6			
105			1,6	1,1	0,6			
110			1,7	1,2	0,7			
115			2,0	1,4	0,7			
120	0.0			1,6	0,8			
125	2,2			1,7	0,9			
130				2,0	1,0			
135					1,1			
140		2,2			1,2			
145			2.2		1,3			
150			2,2		1,4			
155				2,2	1,6			
160					1,7			
165					1,9			
170	1		2,1					
175					2,2			

Minimum anchorage length

According to ETA-08/0105, issue 2014-04-30, the minimum anchorage length shall be increased by factor 1,5 for wet diamond core drilling. For all the other given drilling methods the factor is 1,0.

Minimum anchorage and lap lengths for C20/25; maximum hole lengths (ETA 08/0105)

Rebar		Hammer drilling, Compressed air drilling, Dry diamond coring drilling		Wet diamond coring drilling		
Diameter d _s [mm]	f _{y,k} [N/mm²]	l _{b,min} * [mm]	I _{o,min} * [mm]	l _{b,min} * [mm]	l _{o,min} * [mm]	I _{max} [mm]
8	500	113	200	170	300	1000
10	500	142	200	213	300	1000
12	500	170	200	255	300	1200
14	500	198	210	298	315	1400
16	500	227	240	340	360	1600
18	500	255	270	383	405	1800
20	500	284	300	425	450	2000
22	500	312	330	468	495	2200
24	500	340	360	510	540	2400
25	500	354	375	532	563	2500
26	500	369	390	553	585	2600
28	500	397	420	595	630	2800
30	500	425	450	638	675	3000
32	500	454	480	681	720	3200
34	500	492	510	738	765	3200
36	500	532	540	797	810	3200
40	500	616	621	925	932	3200

* $I_{b,min}$ (8.6) and $I_{0,min}$ (8.11) are calculated for good bond conditions with maximum utilisation of rebar yield strength f_{yk} = 500 N/mm² and α_6 = 1,0