

Hilti HIT-HY 200 mortar with rebar (as post-installed connection)

Injection mortar system	Benefits	
	Hilti HIT- HY 200-R 330 ml foil pack (also available as 500 ml	 SAFEset technology: drilling and borehole cleaning in one step with Hilti hollow drill bit HY 200-R version is formulated for best handling and cure time specifically for rebar applications
Hilti HIT-HY 200	foil pack) Hilti HIT- HY 200-A 330 ml foil pack	 Suitable for concrete C 12/15 to C 50/60 Suitable for dry and water saturated concrete
Hilti HIT-HY 200	(also available as 500 ml foil pack)	 For rebar diameters up to 32 mm Non corrosive to rebar elements Good load capacity at elevated temperatures
	Static mixer	 Suitable for embedment length up to 1000 mm Suitable for applications down to -10 °C
a a contraction and the second se	Rebar	 Two mortar (A and R) versions available with different curing times and same performance

Fire

SGK

Hilti SAFEset technology with hollow drill bit

Concrete

resistanc Technical e Approval

European Technical Approval

PROFIS Rebar to design w software

Service temperature range

 $Temperature\ range:\ -40^\circ C\ to\ +80^\circ C\ (max.\ long\ term\ temperature\ +50^\circ C,\ max.\ short\ term\ temperature\ +80^\circ C).$

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European technical approval ^{a)}	DIBt. Berlin	ETA-12/0083 / 2013-06-05 (HIT-HY 200-R)
	ETA-11/0492 / 2013-06-05 (HIT-HY 200-A)	
Fire test report	CSTB, Paris	26033756

 All data given in this section according ETA-12/0083, issued 2013-06-05 and ETA-11/0492, issued 2013-06-05.

Materials

Reinforcement bars according to EC2 Annex C Table C.1 and C.2N.

Properties of reinforcement

Product form		Bars and de-coiled rods		
Class		В	С	
Characteristic yield strength	n f _{vk} or f _{0,2k} (MPa)	400 te	o 600	
Minimum value of $k = (f_t/f_y)_k$		≥ 1,08 ≥ 1,15 < 1,35		
Characteristic strain at max	imum force, ε _{uk} (%)	≥ 5,0 ≥ 7,5		
Bendability		Bend / Rebend test		
Maximum deviation from	Nominal bar size (mm)			
nominal mass	≤ 8	± 6,0		
(individual bar) (%)	> 8	± 4	4,5	
Bond:	Nominal bar size (mm)			
Minimum relative rib area, 8 to 12		0,040		
f _{R,min}	> 12	0,0	956	

Setting details

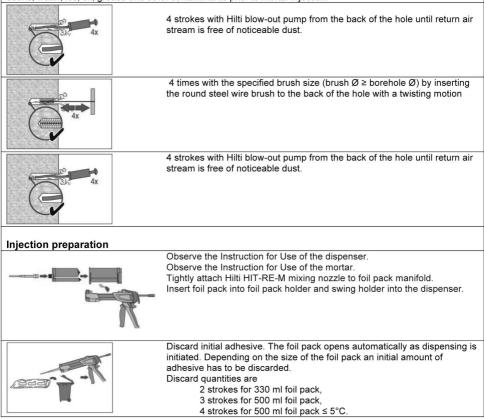
For detailed information on installation see instruction for use given with the package of the product.

Working time, curing time^{a)}

Temperature	HIT-HY 200-R				
of the base material	Working time in which anchor can be inserted and adjusted t _{work}	Curing time before anchor can be fully loaded t _{cure}			
-10 °C to -5 °C	3 hour	20 hour			
-4 °C to 0 °C	2 hour	7 hour			
1 °C to 5 °C	1 hour	3 hour			
6 °C to 10 °C	40 min	2 hour			
11 °C to 20 °C	15 min	1 hour			
21 °C to 30 °C	9 min	1 hour			
31 °C to 40 °C	6 min	1 hour			

Temperature	HIT-HY	IIT-HY 200-A			
of the base material	Working time in which anchor can be inserted and adjusted t _{work}	Curing time before anchor can be fully loaded t _{cure}			
-10 °C to -5 °C	1,5 hour	7 hour			
-4 °C to 0 °C	50 min	4 hour			
1 °C to 5 °C	25 min	2 hour			
6 °C to 10 °C	15 min	1 hour			
11 °C to 20 °C	7 min	30 min			
21 °C to 30 °C	4 min	30 min			
31 °C to 40 °C	3 min	30 min			

Setting instruction


a) Dry and water-saturated concrete, hammer drilling

Bore hole drilling	
	Drill hole to the required embedment depth with an appropriately sized Hilti TE-CD or TE-YD hollow drill bit with Hilti vacuum attachment. This drilling method properly cleans the borehole and removes dust while drilling. After drilling is complete, proceed to the "injection preparation" step in the instructions for use.
C COMMUNE	Drill hole to the required embedment depth using a hammer-drill with carbide drill bit set in rotation hammer mode, a Hilti hollow drill bit or a compressed air drill.
Bore hole cleaning Just before s cleaning methods described below b) Compressed air cleaning (CAC For all bore hole diameters do an	
	Blowing 2 times from the back of the hole with oil-free compressed air (min. 6 bar at 100 litres per minute (LPM)) until return air stream is free of noticeable dust. Bore hole diameter ≥ 32 mm the compressor must supply a minimum air flow of 140 m³/hour. If required use additional accessories and extensions for air nozzle and brush to reach back of hole.
	Brushing 2 times with the specified brush size (brush $\emptyset \ge$ borehole \emptyset) by inserting the round steel brush to the back of the hole in a twisting motion. The brush shall produce natural resistance as it enters the anchor hole. If this is not the case, please use a new brush or a brush with a larger diameter.
2%	Blowing 2 times again with compressed air until return air stream is free of noticeable dust.

a) Manual Cleaning (MC)

As an alternative to compressed air cleaning, a manual cleaning is permitted for hammer drilled boreholes up to hole diameters $d_0 \le 20$ mm and depths I_v resp. $I_{e,ges.} \le 160$ mm or 10 * d. The borehole must be free of dust, debris, water, ice, oil, grease and other contaminants prior to mortar injection.

Inject adhesive from the back of the	e borehole witho	ut forming air voids		
	Injection method for borehole depth ≤ 250 mm: Inject the mortar from the back of the hole towards the front and slowly withdraw the mixing nozzle step by step after each trigger pull. Important! Use extensions for deep holes (> 250 mm). Fill holes approximately 2/3 full, or as required to ensure that the annular gap between the rebar and the concrete is completely filled with adhesive over the embedment length.			
	After injecting, depressurize the dispenser by pressing the release trigger (only for manual dispenser). This will prevent further mortar discharge from the mixing nozzle.			
	applications: A sized piston plu allowing the pre- plug towards th dispenser by pr discharge from The proper inje- creation of air v borehole withou pressed toward Attention! Pullin	ection for borehole depth > 250 mm or overhead Assemble mixing nozzle, extension(s) and appropriately g. Insert piston plug to back of the hole. Begin injection ressure of the injected adhesive mortar to push the piston e front of the hole. After injecting, depressurize the essing the release trigger. This will prevent further mortar the mixing nozzle. ction of mortar using a piston plug HIT-SZ prevents the oids. The piston plug must be insertable to the back of the it resistance. During injection the piston plug will be s the front of the borehole slowly by mortar pressure. g the injection or when changing the foil pack, the piston d inactive and air voids may occur.		
	HDM 330	Manual dispenser (330 ml)		
	HDM 500 Manual dispenser (330 / 500 ml) HDE 500-A22 Electric dispenser (330 / 500 ml)			
Setting the element				
Carranana Carrana Salar Carrana Salar Carra Inork	contaminants.	ify that the element is dry and free of oil and other ement to the required embedment depth until working time d.		
K <u>enannanan an a</u>	After installing the rebar the annular gap must be completely filled with mortar. Proper installation can be verified when: Desired anchoring embedment is reached I _v : Embedment mark at concrete surface. Excess mortar flows out of the borehole after the rebar has been fully inserted until the embedment mark. Overhead application: Support the rebar and secure it from falling till			
Станинана	base material.	o naroen. rking time "t _{work} ", which varies according to temperature of Minor adjustments to the rebar position may be performed ing time. After t _{cure} preparation work may continue.		

For detailed information on installation see instruction for use given with the package of the product.

Resistance to chemical substances

Chemical	Resistance	Chemical	Resistance
Air	+	Gasoline	+
Acetic acid 10%	+	Glycole	0
Acetone	0	Hydrogen peroxide 10%	0
Ammonia 5%	+	Lactic acid 10%	+
Benzyl alcohol	-	Maschinery oil	+
Chloric acid 10%	0	Methylethylketon	0
Chlorinated lime 10%	+	Nitric acid 10%	0
Citric acid 10%	+	Phosphoric acid 10%	+
Concrete plasticizer	+	Potassium Hydroxide pH 13,2	+
De-icing salt (Calcium chloride)	+	Sea water	+
Demineralized water	+	Sewage sludge	+
Diesel fuel	+	Sodium carbonate 10%	+
Drilling dust suspension pH 13,2	+	Sodium hypochlorite 2%	+
Ethanol 96%	-	Sulfuric acid 10%	+
Ethylacetate	-	Sulfuric acid 30%	+
Formic acid 10%	+	Toluene	0
Formwork oil	+	Xylene	0

+ resistant

o resistant in short term (max. 48h) contact

not resistant

Electrical Conductivity

HIT-HY 200 in the hardened state **is not conductive electrically**. Its electric resistivity is $15,5 \cdot 10^9 \,\Omega \cdot cm$ (DIN IEC 93 – 12.93). It is adapted well to realize electrically insulating anchorings (ex: railway applications, subway).

Drilling diameters

	Drill bit diar	neters d₀ [mm]
Rebar (mm)	Hammer drill (HD)	Compressed air drill (CA)
8	12 (10 ^{a)})	-
10	14 (12 ^{a)})	-
12	16 (14 ^{a)})	17
14	18	17
16	20	20
18	22	22
20	25	26
22	28	28
24	32	32
25	32	32
26	26 35 35	
28	35	35
30	37	35
32	40	40

a) Max. installation length I = 250 mm.

Basic design data for rebar design according to ETA

Bond strength

Bond strength in N/mm² according to ETA for good bond conditions

Rebar (mm)	Concrete class								
Repar (mm)	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
8 - 32	1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3

Minimum anchorage length

Minimum and maximum embedment depths and lap lengths for C20/25 according to ETA

Reba	r	1 *	1 *	Concrete temp. ≥ -10°C	Concrete temp. ≥ 0°C
Diameter d _s [mm]	f _{v,k} [N/mm²]	[mm]	l _{0,min} * [mm]	I _{max} [mm]	I _{max} [mm]
8	500	113	200	700	1000
10	500	142	200	700	1000
12	500	170	200	700	1000
14	500	198	210	700	1000
16	500	227	240	700	1000
18	500	255	270	700	1000
20	500	284	300	700	1000
22	500	312	330	700	1000
24	500	340	360	700	1000
25	500	354	375	700	1000
26	500	369	390	700	1000
28	500	397	420	700	1000
30	500	425	450	700	1000
32	500	454	480	700	1000

* $I_{b,min}$ (8.6) and $I_{0,min}$ (8.11) are calculated for good bond conditions with maximum utilisation of rebar yield strength f_{vk} = 500 N/mm² and α_6 = 1,0