

3.2.3.1 Product description

Hilti HIT-HY 200 adhesive is an injectable, two-component, hybrid adhesive. The two components are separated by means of a dual-cylinder foil pack attached to a manifold. The two components combine and react when dispensed through a static mixing nozzle attached to the manifold.

Hilti HIT-HY 200 adhesive is available in two options, Hilti HIT-HY 200-A, and Hilti HIT-HY 200-R. Both options utilize the same technical data. Hilti HIT-HY 200-A will have shorter working times and curing times than Hilti HIT-HY 200-R. The packaging for each is different which helps the user distinguish between the two adhesives.

Hilti HIT-HY 200 adhesive comes with three hole cleaning options:

- The traditional hole cleaning method uses steel wire brushes and compressed air
- The self-cleaning method uses the Hilti TE-CD or TE-YD Hollow Drill Bits in conjunction with a Hilti vacuum to remove the dust as you drill. The hole is clean and ready for anchor installation.
- The no-cleaning method requires the use of Hilti HIT-Z and HIT-Z-R anchor rods (when drilled with hammer-drilled holes). If the base material temperature is less than 5° C or if diamond core drilling is used, then the drilled hole must be cleaned.

Elements that are suitable for use with this system are threaded steel rods, Hilti HIS-(R)N steel internally threaded inserts, steel reinforcing bars and Hilti HIT-Z and HIT-Z-R threaded rods.

Product features

- Two great products with equal performance data
- User can select product gel time suitability based on temperature of the base material and jobsite time requirements
- No hole cleaning requirement when installed SafeSet[™] hollow drill bit technology
- No hole cleaning requirement when installing HIT-Z anchor rods in dry conditions with hammerdrilled holes
- ICC-ES approved for cracked concrete and seismic service
- May be installed in diamond cored holes with HIT-Z anchor rod only when addition cleaning steps are employed

Guide specifications

Injectable adhesive shall be used for installation of threaded rods (rebar) (inserts) into existing concrete. Adhesive shall be furnished in containers which keep component A and component B separate. Containers shall be designed to accept static mixing nozzle which thoroughly blends component A and component B and allows injection of the mixed adhesive directly into the drilled hole. Only injection tools and static mixing nozzles supplied by the manufacturer may be used. Injection adhesive shall be formulated to include the resin and hardener to provide optimal curing speed, high strength and stiffness. Injection adhesive anchor system shall be Hilti HIT-HY 200 installed using Hilti Safe Set[™] Technology. HIT-HY 200 System shall be supplied by Hilti.

3.2.3.1	Product description
3.2.3.2	Material specifications
3.2.3.3	Technical data
3.2.3.4	Installation instructions
3.2.3.5	Ordering information

Listings/Approvals

ICC-ES (International Code Council) ESR-3187 NSF/ANSI Std 61 certification for use in potable water European Technical Approval ETA-11/0492, ETA-11/0493 ETA-12/0006, ETA-12/0028 ETA-12/0083, ETA-12/0084 City of Los Angeles Research Report No. 25964

Independent Code Evaluation

IBC®/IRC® 2015 (ICC-ES AC308/ACI 355.4) IBC®/IRC® 2012 (ICC-ES AC308/ACI 355.4) IBC®/IRC® 2009 (ICC-ES AC308) IBC®/IRC® 2006 (ICC-ES AC308) Abu Dhabi International Building Code (ADIBC) 2013

LEED[®] Credit 4.1-Low Emitting Materials

The Leadership in Energy and Environmental Design (LEED[®]) Green Building Rating system[™] is the nationally accepted benchmark for the design, construction and operation of high performance green buildings.

Department of Transportation

Contact Hilti to get a current list of State Departments of Transportation that have added HIT-HY 200 to their qualified product listing.

3.2.3.2 Material specifications

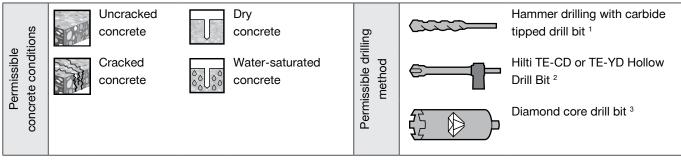
For material specifications for anchor rods and inserts, please refer to section 3.2.8.

3.2.3.3 Technical data

The following document is a supplement to the Hilti North American Product Technical Guide, Volume 2: Anchor Fastening Technical Guide, Edition 16. Specific sections in this supplement will refer to the aforementioned document.

Please refer to the publication in its entirety for complete details on this product including data development, product specifications, general suitability, installation, corrosion and spacing and edge distance guidelines.

To consult directly with a team member regarding our anchor fastening products, contact Hilti's team of technical support specialists on the following mail address ae.technicalsupport@hilti.com.


3.2.3.3.1 ACI 318-14 Chapter 17 design

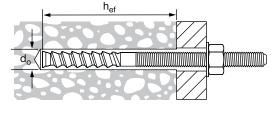
The load values contained in this section are Hilti Simplified Design Tables. The load tables in this section were developed using the Strength Design parameters and variables of ESR-3187 and the equations within ACI 318-14 Chapter 17. For a detailed explanation of the Hilti Simplified Design Tables, refer to section 3.1.8. Data tables from ESR-3187 are not contained in this section, but can be found at www.icc-es.org or at www.us.hilti.com.

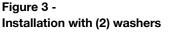
HIT-HY 200 adhesive with HIT-Z and HIT-Z-R anchor rods

Figure 1 - HIT-Z and HIT-Z-R installation conditions

1 Anchor may be installed in a hole drilled with a carbide-tipped bit without cleaning the drilling dust from the hole. Temperature must be 5°C or higher. Drilling dust must be removed from the hole if the temperature is below 5°C. See Manufacturer's Published Installation Instructions (MPII).

2 When temperatures are below 5°C, TE-CD or TE-YD Hollow Drill Bits used with a Hilti vacuum cleaner are viable methods for removing drilling dust from the hole. 3 Holes drilled by diamond coring require cleaning with a wire brush, a water hose and compressed air. See MPII.

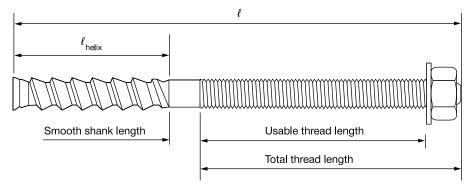

 Table 1 - Specifications for HIT-Z and HIT-Z-R installed


 with HIT-HY 200 adhesive

Setting information		Symbol	Units	Nominal anchor diameter					
Setting information	Symbol	Units	10	12	16	20			
Nominal bit diamete	Nominal bit diameter			12	14	18	22		
Effective	minimum	h _{ef,min}	mm	60	70	96	100		
embedment	maximum	h _{ef,max}	mm	120	144	192	220		
Diameter	through-set		mm	14	16	20 ¹	24 ¹		
of fixture hole	preset	Correction of the second secon	mm	12	14	18	22		
Installation torque	T _{inst}	Nm	25	40	80	150			

1 Install using (2) washers. See Figure 3.

Figure 2 -HIT-Z and HIT-Z-R specfications



Size	ℓ Anchor length mm	ℓ _{helix} Helix length mm	Smooth shank length mm	Total thread length mm	Usable thread length mm	HIT-Z Length Code
HIT-Z(-R) M10x95	95	60	8	27	14	E
HIT-Z(-R) M10x115	115	60	8	47	34	G
HIT-Z(-R) M10x135	135	60	8	67	54	н
HIT-Z(-R) M10x160	160	60	8	92	79	J
HIT-Z(-R) M12x105	105	60	8	37	21	F
HIT-Z(-R) M12x140	140	60	8	72	56	I
HIT-Z(-R) M12x155	155	60	8	87	71	J
HIT-Z(-R) M12x196	196	60	8	128	112	М
HIT-Z(-R) M16x155	155	93	11	51	30	J
HIT-Z(-R) M16x175	175	93	11	71	50	к
HIT-Z(-R) M16x205	205	93	11	101	80	N
HIT-Z(-R) M16x240	240	93	32	115	94	Р
HIT-Z(-R) M20x215	215	100	13	102	78	N
HIT-Z(-R) M20x250	250	100	48	102	78	Q

Table 2 - HIT-Z and HIT-Z-R anchor rod length and thread dimension

Figure 4 - HIT-Z and HIT-Z-R anchor rod length and thread dimension

Table 3 - HIT-HY 200 design strength with concrete/pullout failure for HIT-Z(-R) rods in uncracked concrete 1,2,3,4,5,6,7,8,9,10

Nominal			Tension	— ΦΝ _n			Shear	— ΦV _n	
anchor	Effective								
diameter	embed.	f' _c = 25 MPa	f′ _c = 30 MPa	<i>f</i> ′ _c = 40 MPa	f' _c = 50 MPa	f'_{c} = 25 MPa	f' _c = 30 MPa	<i>f</i> ′ _c = 40 MPa	f′ _c = 50 MPa
mm	mm	kN	kN	kN	kN	kN	kN	kN	kN
	60	15.1	16.5	19.1	21.4	16.3	17.8	20.6	23.0
10	90	25.4	25.4	25.4	25.4	59.8	65.5	75.6	84.5
	120	25.4	25.4	25.4	25.4	92.0	100.8	116.4	130.1
	70	19.0	20.9	24.1	26.9	41.0	44.9	51.9	58.0
12	108	30.5	30.5	30.5	30.5	78.6	86.1	99.4	111.1
	144	30.5	30.5	30.5	30.5	121.0	132.5	153.0	171.1
	96	30.6	33.5	38.7	43.2	65.8	72.1	83.3	93.1
16	144	56.2	61.5	63.7	63.7	121.0	132.5	153.0	171.1
	192	63.7	63.7	63.7	63.7	186.2	204.0	235.6	263.4
	100	32.5	35.6	41.1	46.0	70.0	76.7	88.5	99.0
20	180	78.5	84.7	84.7	84.7	169.0	185.2	213.8	239.1
	220	84.7	84.7	84.7	84.7	228.4	250.2	288.9	323.0

Table 4 - HIT-HY 200 design strength with concrete/pullout failure for HIT-Z(-R) rods in cracked concrete	1,2,3,4,5,6,7,8,9,10
---	----------------------

Nominal			Tension	— ΦΝ _n		Shear — ΦV_n					
anchor	Effective										
diameter	embed.	f' _c = 25 MPa	<i>f</i> ′ _c = 30 MPa	<i>f</i> ′ _c = 40 MPa	f' _c = 50 MPa	<i>f</i> ′ _c = 25 MPa	<i>f</i> ′ _c = 30 MPa	f' _c = 40 MPa	f' _c = 50 MPa		
mm	mm	kN	kN	kN	kN	kN	kN	kN	kN		
	60	10.7	11.7	13.6	15.2	11.5	12.7	14.6	16.3		
10	90	19.7	21.6	24.9	25.4	42.4	46.5	53.7	60.0		
	120	25.4	25.4	25.4	25.4	65.3	71.6	82.6	92.4		
	70	13.5	14.8	17.1	19.1	29.1	31.9	36.8	41.2		
12	108	25.9	28.4	28.5	28.5	55.8	61.1	70.6	78.9		
	144	28.5	28.5	28.5	28.5	85.9	94.1	108.6	121.5		
	96	21.7	23.8	27.5	30.7	46.7	51.2	59.1	66.1		
16	144	39.9	43.7	50.4	56.4	85.9	94.1	108.6	121.5		
	192	61.4	63.7	63.7	63.7	132.2	144.8	167.3	187.0		
	100	23.1	25.3	29.2	32.6	49.7	54.4	62.9	70.3		
20	180	55.7	61.0	70.5	78.8	120.0	131.5	151.8	169.7		
	220	75.3	82.5	83.1	83.1	162.2	177.7	205.1	229.4		

1 Section 3.1.8 for explanation on development of load values.

2 See Section 3.1.8.6 to convert design strength value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Tabular values represent a single anchor without reductions for edge distance, anchor spacing, or concrete thickness. Shaded cells indicate that pullout is the controlling failure mode. Compare to the steel values in Table 5. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 55°C, max. long term temperature = 43°C.

For temperature range B: Max. short term temperature = 80°C, max. long term temperature = 43°C multiply above values by 1.0. For temperature range C: Max. short term temperature = 120°C, max. long term temperature = 72°C multiply above values by 0.90. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long-term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry and water saturated concrete conditions.

7 Tabular values are for short-term loads only. For sustained loads, see section 3.1.8.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by λ_a as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.

9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in tension only by the following reduction factors:

12 mm diameter - $\alpha_{N,seis} = 0.67$

10 mm, 16 mm, and 20 mm diameter - $\alpha_{N.seis} = 0.75$

See Section 3.1.8.7 for additional information on seismic applications.

10 Diamond core drilling with Hilti HIT-Z(-R) rods is permitted with no reduction in published data above.

Table 5 - Steel design strength for Hilti HIT-Z and HIT-Z-R rods 1,2

		HIT-Z carbon steel ro	d	HIT-Z-R stainless steel rod					
Nominal	Tensile ³	Shear ⁴	Seismic Shear ⁵	Tensile ³	Shear ⁴	Seismic Shear ⁵			
anchor diameter	φN _{sa}	φV _{sa}	φV _{sa,eq}	φN _{sa}	φV _{sa}	$\phi V_{sa,eq}$			
mm	kN	kN	kN	kN	kN	kN			
10	24.5	10.0	10.0	24.5	13.6	13.6			
12	35.6	15.0	10.0	35.6	19.7	14.8			
16	62.3	25.0	15.0	62.3	34.5	22.4			
20	94.8	40.0	25.0	94.8	52.5	34.1			

1 See section 3.1.8.6 to convert design strength value to ASD value.

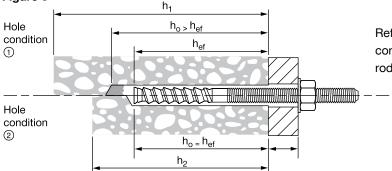
2 HIT-Z and HIT-Z-R rods are to be considered brittle steel elements.

3 Tensile = $\phi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17.

4 Shear values determined by static shear tests with $\phi V_{sa} \le \phi 0.60 A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17.

5 Seismic Shear = $\alpha_{Vseis} \phi V_{e_3}$: Reduction for seismic shear only. See section 3.1.8.7 for additional information on seismic applications.

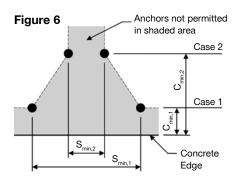
Hilti HIT-Z(-R) rod permissible combinations of edge distance, anchor spacing, and concrete thickness


The Hilti HIT-Z and HIT-Z-R anchor rods produce higher expansion forces in the concrete slab when the installation torque is applied. This means that the anchor must be installed with larger edge distances and spacing when compared to standard threaded rod, to minimize the likelihood that the concrete slab will split during installation.

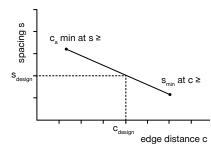
The permissible edge distance is based on the concrete condition (cracked or uncracked), the concrete thickness, and anchor spacing if designing for anchor groups. The permissible concrete thickness is dependent on whether or not the drill dust is removed during the anchor installation process.

Step 1: Check concrete thickness

When using Hilti HIT-Z and HIT-Z-R anchor rods, drilling dust does not need to be removed for optimum capacity when base material temperatures are greater than 5° C and a hammer drill with a carbide tipped drill bit is used. However, concrete thickness can be reduced if the drilling dust is removed. The figure below shows both drilled hole conditions. Drilled hole condition 1 illustrates the hole depth and concrete thickness when drilling dust is left in the hole. Drilled hole condition 2 illustrates the corresponding reduction when drill dust is removed by using compressed air, Hilti TE-CD or TE-YD Hollow Drill Bits with a Hilti vacuum.


Figure 5

Refer to tables 6 to 9 in this section for the minimum concrete thicknesses associated with the Hilti HIT-Z(-R) rods based on diameter and drilled hole condition.


Step 2: Check edge distance and anchor spacing

Tables 6 to 9 in this section show the minimum edge distance and anchor spacing based on a specific concrete thickness and whether or not the design is for cracked or uncracked concrete. There are two cases of edge distance and anchor spacing combinations for each embedment and concrete condition (cracked or uncracked). **Case 1** is the minimum edge distance needed for one anchor or for two anchors with large anchor spacing. **Case 2** is the minimum anchor spacing that can be used, but the edge distance is increased to help prevent splitting. Linear interpolation can be used between **Case 1** and **Case 2** for any specific concrete thickness and concrete condition. See the following figure and calculation which can be used to determine specific edge distance and anchor spacing combinations.

For a specific edge distance, the permitted spacing is calculated as follows:

$$S \ge S_{\min,2} + \frac{(S_{\min,1} - S_{\min,2})}{(C_{\min,1} - C_{\min,2})} (C - C_{\min,2})$$

Table 6 - Minimum edge distance, spacing, and concrete thickness for M10 diameter Hilti HIT-Z and HIT-Z-R rods

Desig	n information	Symbol	Units	Nominal rod diameter								
Rod (D.D.	d	mm					10				
Effec	tive embedment	h _{ef}	mm	nm 60 90						120		
Drille	d hole condition	-	-	2 ²	1 c	or 2	2 ²	1 c	or 2	2 ²	1 c	r 2
Minin	num concrete thickness	h	mm	100	120	156	120	150	176	150	180	197
be e	Minimum edge and spacing	C _{min,1}	mm	99	83	64	83	66	57	66	55	51
scke	Case 1 ¹	S _{min,1}	mm	295	244	187	244	197	166	197	164	148
Uncracked concrete	Minimum edge and spacing	C _{min,2}	mm	181	148	110	148	115	96	115	93	84
5°	Case 2 ¹	S _{min,2}	mm	50	50	50	50	50	50	50	50	50
7 0	Minimum edge and spacing	C _{min,1}	mm	71	59	52	59	50	50	50	50	50
sked	Case 1 ¹	S _{min,1}	mm	209	174	150	174	131	106	131	84	66
Cracked	Minimum edge and spacing	C _{min,2}	mm	124	101	74	101	77	64	77	62	55
0 0	Case 2 ¹	S _{min,2}	mm	50	50	50	50	50	50	50	50	50

Table 7 - Minimum edge distance, spacing, and concrete thickness for M12 diameter Hilti HIT-Z and HIT-Z-R rods

Desig	n information	Symbol	Units	Nominal Rod Diameter								
Rod 0	D.D.	d	mm	12								
Effect	tive embedment	h _{ef}	mm	n 70 108 144					144	4		
Drilleo	d hole condition	-	-	2 ² 1 or 2 2 ² 1 or 2 2 ²				1 c	or 2			
Minim	num concrete thickness	h	mm	100	130	184	138	168	209	174	204	234
D D	Minimum edge and spacing	C _{min,1}	mm	139	107	76	101	83	67	80	68	60
icke	Case 1 ¹	S _{min,1}	mm	416	320	225	300	247	199	239	204	176
Uncracked concrete	Minimum edge and spacing	C min,2	mm	258	194	131	181	146	114	140	116	99
5°	Case 2 ¹	S min,2	mm	60	60	60	60	60	60	60	60	60
7 0	Minimum edge and spacing	C _{min,1}	mm	101	78	62	74	61	60	60	60	60
sked	Case 1 ¹	S _{min,1}	mm	303	232	186	217	178	126	168	117	79
Cracked	Minimum edge and spacing	C _{min,2}	mm	182	136	90	127	101	77	96	79	67
	Case 2 ¹	S _{min,2}	mm	60	60	60	60	60	60	60	60	60

1 Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2. Linear interpoloation for a specific edge distance c, where $c_{min,1} < c < c_{min,2}$, will determine the permissible spacing s as follows:

$$s \ge s_{\min,2} + \frac{(s_{\min,1} - s_{\min,2})}{(c_{\min,1} - c_{\min,2})} (c - c_{\min,2})$$

2 For shaded cells, drilling dust must be removed from drilled hole to justify minimum concrete thickness.

Table 8 - Minimum edge distance, spacing, and concrete thickness for M16 diameter Hilti HIT-Z and HIT-Z-R rods

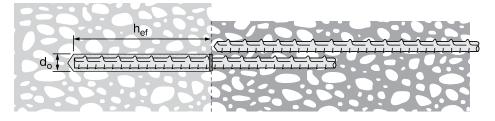
Desigr	n information	Symbol	Units	Nominal rod diameter								
Rod C).D.	d	mm	16								
Effecti	ive embedment	h _{ef}	mm		96			144		192		
Drilled	hole condition	-	-	2 ²	1 c	or 2	2 ²	1 c	or 2	2 ²	1 c	or 2
Minim	um concrete thickness	h	mm	141	196	237	189	244	269	237	292	312
b e	Minimum edge and spacing	C _{min,1}	mm	158	114	94	118	92	83	94	80	80
Uncracked concrete	Case 1 ¹	S _{min,1}	mm	473	339	281	352	271	248	281	217	188
onc	Minimum edge and spacing	C min,2	mm	289	201	161	209	156	139	161	126	116
5°	Case 2 ¹	S min,2	mm	80	80	80	80	80	80	80	80	80
7 0	Minimum edge and spacing	C _{min,1}	mm	116	83	80	86	80	80	80	80	80
sked srete	Case 1 ¹	S _{min,1}	mm	343	248	211	258	160	129	171	94	81
Cracked	Minimum edge and spacing	C min,2	mm	204	139	111	146	107	95	111	85	80
	Case 2 ¹	S _{min,2}	mm	80	80	80	80	80	80	80	80	80

Desigr	n information	Symbol	Units				Nomin	al Rod Dia	ameter			
Rod C).D.	d	mm					20				
Effecti	ve embedment	h _{ef}	mm		100			180			220	
Drilled	hole condition	-	-	2 ²	1 c	or 2	2 ²	1 c	or 2	2 ²	1 c	or 2
Minim	um concrete thickness	h	mm	145	200	282	225	280	335	265	320	370
b b	Minimum edge and spacing	C _{min,1}	mm	235	170	121	152	122	103	129	107	100
ackec	Case 1 ¹	S _{min,1}	mm	702	511	362	451	363	301	383	317	252
Uncracked concrete	Minimum edge and spacing	C _{min,2}	mm	436	307	209	269	210	170	224	180	151
ъ°	Case 2 ¹	S _{min,2}	mm	100	100	100	100	100	100	100	100	100
O	Minimum edge and spacing	C _{min,1}	mm	176	128	102	114	100	100	100	100	100
cked	Case 1 ¹	S _{min,1}	mm	526	380	298	337	246	163	277	178	113
Cracked concrete	Minimum edge and spacing	C _{min,2}	mm	318	222	148	193	149	119	159	126	105
	Case 2 ¹	S min,2	mm	100	100	100	100	100	100	100	100	100

1 Linear interpolation is permitted to establish an edge distance and spacing combination between Case 1 and Case 2.


 $\label{eq:linear_interpolation} \mbox{ for a specific edge distance c, where $c_{min,1} < c < c_{min,2}$, will determine the permissible spacing s as follows: $c_{min,2}$, will determine the permissible spacing s as follows: $c_{min,2}$, $c_{min,$

$$s \ge s_{min,2} + \frac{(s_{min,1} - s_{min,2})}{(c_{min,1} - c_{min,2})} (c - c_{min,2})$$


2 For shaded cells, drilling dust must be removed from drilled hole to justify minimum concrete thickness.

Hilti HIT-HY 200 adhesive with deformed reinforcing bars (rebar)

Figure 7 - Rebar installation conditions

Figure 8 - Rebar installed with HIT-HY 200 adhesive

Table 10 - Specifications for rebar installed with HIT-HY 200 adhesive

Cotting information		Cumbal	nbol Units				Reba	r size			
Setting information	Symbol	Units	10	12	14	16	20	25	28	32	
Nominal bit diameter	d _。	mm	14	16	18	20	25	32	35	40	
Effective	minimum	h _{ef,min}	mm	60	70	75	80	90	100	112	128
embedment	maximum	h _{ef,max}	mm	200	240	280	320	400	500	560	640
Minimum concrete n	nember thickness	h _{min}	mm	h _{ef} -	+ 30	h _{ef} + 2d _o ⁽⁴⁾					
Minimum edge distance ¹		C _{min}	mm	50	60	70	80	100	125	140	160
Minimum anchor spacing		S _{min}	mm	50	60	80	100	120	135	140	160

1 Edge distance of 44mm is permitted provided the rebar remains un-torqued.

Note: The installation specifications in table 10 above and the data in tables 11 through 13 pertain to the use of Hilti HIT-HY 200 with rebar designed as a post-installed anchor using the provisions of ACI 318-14 Chapter 17. For the use of Hilti HIT-HY 200 with rebar for typical development calculations according to ACI 318-14 Chapter 25 (formerly ACI 318-11 Chapter 12), refer to section 3.1.8.14 for the design method and table 22 at the end of this section.

Table 11 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for metric rebar in uncracked concrete ^{1,2,3,4,5,6,7,8,9}

Nominal			Tension	μ — φN _n		Shear — ϕV_n					
rebar	Effective										
diameter	embedment	f' _c = 25 MPa	f' _c = 30 MPa	<i>f</i> ′ _c = 40 MPa	f' _c = 50 MPa	f' _c = 25 MPa	f' _c = 30 MPa	f' _c = 40 MPa	f′ _c = 50 MPa		
mm	mm	kN	kN	kN	kN	kN	kN	kN	kN		
	60	13.7	14.0	14.4	14.7	14.8	15.1	15.5	15.9		
10	90	20.6	21.0	21.6	22.1	44.4	45.2	46.5	47.6		
10	120	27.5	28.0	28.8	29.4	59.2	60.3	62.0	63.4		
	200	45.8	46.6	48.0	49.1	98.6	100.4	103.4	105.7		
	70	19.0	19.6	20.2	20.6	41.0	42.2	43.4	44.4		
12	108	29.7	30.2	31.1	31.8	63.9	65.1	67.0	68.5		
12	144	39.6	40.3	41.5	42.4	85.2	86.8	89.3	91.3		
	240	65.9	67.1	69.1	70.7	142.0	144.6	148.8	152.2		
	75	21.1	23.1	25.2	25.8	45.5	49.8	54.3	55.5		
14	126	40.4	41.1	42.3	43.3	87.0	88.6	91.2	93.2		
14	168	53.8	54.8	56.4	57.7	116.0	118.1	121.6	124.3		
	280	89.7	91.4	94.1	96.2	193.3	196.9	202.6	207.2		
	80	23.3	25.5	29.4	31.4	50.1	54.9	63.4	67.6		
10	144	52.7	53.7	55.3	56.5	113.6	115.7	119.1	121.8		
16	192	70.3	71.6	73.7	75.4	151.5	154.3	158.8	162.4		
	320	117.2	119.4	122.9	125.6	252.5	257.1	264.6	270.6		
	90	27.7	30.4	35.1	39.2	59.8	65.5	75.6	84.5		
00	180	78.5	83.9	86.4	88.3	169.0	180.8	186.1	190.3		
20	240	109.9	111.9	115.2	117.8	236.7	241.0	248.1	253.7		
	400	183.2	186.5	192.0	196.3	394.5	401.7	413.5	422.8		
	100	32.5	35.6	41.1	46.0	70.0	76.7	88.5	99.0		
25	225	109.7	120.2	135.0	138.0	236.3	258.8	290.7	297.3		
25	300	168.9	174.9	180.0	184.0	363.7	376.6	387.6	396.4		
	500	286.2	291.4	300.0	306.7	616.4	627.7	646.0	660.6		
	112	38.5	42.2	48.7	54.5	83.0	90.9	105.0	117.3		
00	252	130.0	142.4	164.5	173.1	280.0	306.8	354.2	372.9		
28	336	200.2	219.3	225.8	230.8	431.1	472.3	486.2	497.2		
	560	359.0	365.6	376.3	384.7	773.2	787.4	810.4	828.7		
	128	47.1	51.6	59.5	66.6	101.4	111.0	128.2	143.4		
00	288	158.8	174.0	200.9	224.6	342.1	374.8	432.8	483.8		
32	384	244.6	267.9	294.9	301.5	526.7	577.0	635.1	649.4		
	640	468.9	477.5	491.4	502.5	1,009.9	1,028.5	1,058.5	1,082.4		

1 See section 3.1.8 for explanation on development of load values.

2 See section 3.1.8.6 to convert design strength (factored resistance) value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Tabular values represent a single anchor without reductions for edge distance, anchor spacing, or concrete thickness. Shaded cells indicate that bond strength is the controlling failure mode. Compare to the steel values in Table 13. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 55° C, max. long term temperature = 43° C. For temperature range B: Max. short term temperature = 80° C, max. long term temperature = 43° C multiply above values by 0.92.

For temperature range C: Max. short term temperature = 120° C, max. long term temperature = 72° C multiply above values by 0.78. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_a as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.

9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 12 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for metric rebar in cracked concrete^{1,2,3,4,5,6,7,8,9}

Nominal			Tension	φN _n		Shear — ϕV_n					
rebar	Effective										
diameter	embedment	f′ _c = 25 MPa	f'_ = 30 MPa	f'_ = 40 MPa	f'_ = 50 MPa	f'_ = 25 MPa	f'_ = 30 MPa	f'_ = 40 MPa	f'_ = 50 MPa		
mm	mm	kN	κΝ	kN	κΝ	κΝ	κΝ	kN	κΝ		
	60	9.4	9.6	9.9	10.1	10.1	10.3	10.6	10.9		
10	90	14.1	14.4	14.8	15.1	30.4	31.0	31.9	32.6		
10	120	18.8	19.2	19.7	20.2	40.5	41.3	42.5	43.5		
	200	31.4	32.0	32.9	33.6	67.6	68.8	70.8	72.4		
	70	13.4	13.6	14.0	14.3	28.8	29.3	30.1	30.8		
10	108	20.6	21.0	21.6	22.1	44.4	45.2	46.5	47.6		
12	144	27.5	28.0	28.8	29.4	59.2	60.3	62.0	63.4		
	240	45.8	46.6	48.0	49.1	98.6	100.4	103.4	105.7		
	75	15.0	16.4	17.5	17.9	32.3	35.4	37.7	38.5		
14	126	28.0	28.6	29.4	30.1	60.4	61.5	63.3	64.7		
14	168	37.4	38.1	39.2	40.1	80.5	82.0	84.4	86.3		
	280	62.3	63.5	65.3	66.8	134.2	136.7	140.7	143.9		
	80	16.5	18.1	20.9	21.8	35.6	39.0	45.0	47.0		
10	144	36.6	37.3	38.4	39.3	78.9	80.3	82.7	84.6		
16	192	48.8	49.7	51.2	52.3	105.2	107.1	110.3	112.7		
	320	81.4	82.9	85.3	87.2	175.3	178.6	183.8	187.9		
	90	19.7	21.6	24.9	27.9	42.4	46.5	53.7	60.0		
20	180	55.7	58.3	60.0	61.3	120.0	125.5	129.2	132.1		
20	240	76.3	77.7	80.0	81.8	164.4	167.4	172.3	176.2		
	400	127.2	129.5	133.3	136.3	273.9	279.0	287.1	293.6		
	100	23.1	25.3	29.2	32.6	49.7	54.4	62.9	70.3		
05	225	69.2	70.4	72.5	74.1	149.0	151.7	156.1	159.7		
25	300	92.2	93.9	96.7	98.8	198.6	202.3	208.2	212.9		
	500	153.7	156.5	161.1	164.7	331.0	337.1	347.0	354.8		
	112	27.4	30.0	34.6	38.7	58.9	64.5	74.5	83.3		
00	252	86.8	88.4	90.9	93.0	186.9	190.3	195.8	200.3		
28	336	115.7	117.8	121.2	124.0	249.1	253.7	261.1	267.0		
	560	192.8	196.3	202.1	206.6	415.2	422.9	435.2	445.0		
	128	33.4	36.6	42.3	47.3	72.0	78.8	91.0	101.8		
00	288	112.8	117.4	120.8	123.5	242.9	252.8	260.2	266.1		
32	384	153.7	156.5	161.1	164.7	331.0	337.1	346.9	354.8		
	640	256.1	260.9	268.5	274.5	551.7	561.8	578.2	591.3		

1 See section 3.1.8 for explanation on development of load values.

2 See section 3.1.8.6 to convert design strength (factored resistance) value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Tabular values represent a single anchor without reductions for edge distance, anchor spacing, or concrete thickness. Shaded cells indicate that bond strength is the controlling failure mode. Compare to the steel values in Table 13. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 55° C, max. long term temperature = 43° C. For temperature range B: Max. short term temperature = 80° C, max. long term temperature = 43° C multiply above values by 0.92. For temperature range C: Max. short term temperature = 120° C, max. long term temperature = 72° C multiply above values by 0.78.

Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

- 6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength by 0.85.
- 7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_a as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.

9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors: 10 to 20 mm - $\alpha_{seis} = 0.60, 25$ mm - $\alpha_{seis} = 0.64, 28$ mm - $\alpha_{seis} = 0.68, 32$ mm - $\alpha_{seis} = 0.75$ See section 3.1.8.7 for additional information on seismic applications.

Table 13 - Steel design strength for rebar¹

		BS 4449 Grade B 500B	
Nominal rebar diameter mm	Tensile² φN _{sa} kN	Shear³ φV _{sa} kN	Seismic Shear⁴ ¢V _{sa,eq} kN
10	28.0	15.6	10.9
12	40.3	22.5	15.8
14	54.9	30.6	21.4
16	71.8	39.9	27.9
20	112.5	61.8	43.3
25	175.5	97.2	68.0
28	220.0	121.8	85.3
32	287.6	159.3	111.5


1 See Section 3.1.8.6 to convert design strength value to ASD value.

2 BS 4449 Grade 500B rebar are considered brittle steel elements.

3 Tensile = $\phi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17

4 Shear = $\phi 0.60 A_{s_{e,N}} f_{uta}$ as noted in ACl 318-14 Chapter 17 5 Seismic Shear = $\alpha_{v_{vseis}} \phi V_{sa}$: Reduction for seismic shear only. See section 3.1.8.7 for additional information on seismic applications.

Hilti HIT-HY 200 adhesive with Hilti HIT-V threaded rod

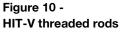


Figure 9 - HIT-V threaded rod installation conditions

Table 14 - HIT-V threaded rod specifications

JUCITION	Units Nominal rod diameter, d						1	
Ĺ	Units	10	12	16	20	24	27	30
d。	mm	12	14	18	22	28	30	35
h _{ef,min}	mm	60	70	80	90	96	108	120
	mm	200	240	320	400	480	540	600
	mm	14	16	20¹	24¹	30¹	32¹	371
	mm	12	14	18	22	26	30	33
T _{inst}	Nm	20	40	80	150	200	270	300
h _{min}	mm	h _{ef} +30	h _{ef} +30 h _{ef} +2d _o					
C _{min}	mm	50	60	80	100	120	135	150
S _{min}	Nm	50	60	80	100	120	135	150
1	n h _{ef,min} h h _{ef,max} T _{inst} C _{min}	n h _{ef,min} mm h _{ef,min} mm h _{ef,max} mm mm Final mm Tinst Nm h _{min} mm C _{min} mm S _{min} Nm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{tabular}{ c c c c c c } \hline d_o & mm & 12 & 14 \\ \hline h_{efmin} & mm & 60 & 70 \\ \hline h h_{efmax} & mm & 200 & 240 \\ \hline mm & mm & 14 & 16 \\ \hline mm & mm & 14 & 16 \\ \hline mm & mm & $12 & 14 \\ \hline T_{inst} & Nm & $20 & 40 \\ \hline h_{min} & mm & h_{ef}+30 \\ \hline c_{min} & mm & $50 & 60 \\ \hline s_{min} & Nm & $50 & 60 \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

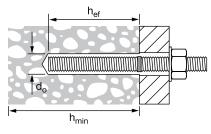


Figure 11 -Installation with (2) washers

1 Install using (2) washers. See Figure 11.

2 Edge distance of 44mm is permitted provided the installation torque is reduced to 0.30 $\mathrm{T}_{\mathrm{inst}}$ for

5d < s < 406 mm and to 0.5 T_{inst} for s > 406 mm

Table 15 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for threaded rod in uncracked concrete ^{1,2,3,4,5,6,7,8,9}

Nominal			Tension	φN _n			Shear	— φV _n	
anchor	Effective	(/			(/ =0.10	(/			(
diameter	embedment							<i>f</i> ′ _c = 40 MPa	
mm	mm	kN	kN	kN	kN	kN	kN	kN	kN
	60	14.6	14.9	15.3	15.7	15.8	16.0	16.5	16.9
10	90	21.9	22.3	23.0	23.5	47.3	48.1	49.5	50.6
10	120	29.3	29.8	30.7	31.4	63.0	64.2	66.0	67.5
	200	48.8	49.7	51.1	52.3	105.0	106.9	110.1	112.6
	70	19.0	20.9	21.5	21.9	41.0	44.9	46.2	In I
12	108	31.6	32.2	33.1	33.9	68.0	69.3	71.3	72.9
12	144	42.1	42.9	44.2	45.1	90.7	92.4	95.1	97.2
	240	70.2	71.5	73.6	75.2	151.2	154.0	158.5	162.1
	80	23.3	25.5	29.4	32.9	50.1	54.9	63.4	70.8
16	144	56.2	57.2	58.9	60.2	121.0	123.2	126.8	129.7
16	192	74.9	76.3	78.5	80.3	161.3	164.3	169.1	172.9
	320	124.8	127.1	130.8	133.8	268.8	273.8	281.8	288.1
	90	27.7	30.4	35.1	39.2	59.8	65.5	75.6	84.5
20	180	78.5	86.0	92.0	94.1	169.0	185.2	198.1	202.6
20	240	117.0	119.2	122.6	125.4	252.0	256.7	264.2	270.1
	400	195.0	198.6	204.4	209.0	420.1	427.8	440.3	450.2
	96	30.6	33.5	38.7	43.2	65.8	72.1	83.3	93.1
24	216	103.2	113.0	130.5	135.4	222.2	243.4	281.1	291.7
24	288	158.8	171.6	176.6	180.6	342.1	369.6	380.4	389.0
	480	280.8	286.0	294.4	301.0	604.9	616.0	634.0	648.3
	108	36.5	40.0	46.1	51.6	78.6	86.1	99.4	111.1
27	243	123.1	134.9	155.7	171.4	265.2	290.5	335.4	369.2
21	324	189.5	207.6	223.5	228.6	408.2	447.2	481.4	492.3
	540	355.4	362.0	372.5	380.9	765.6	779.6	802.4	820.5
	120	42.7	46.8	54.0	60.4	92.0	100.8	116.4	130.1
00	270	144.2	158.0	182.4	203.9	310.6	340.2	392.8	439.2
30	360	222.0	243.2	276.0	282.2	478.1	523.8	594.4	607.8
	600	438.8	446.9	459.9	470.3	945.1	962.5	990.6	1,013.0

1 See section 3.1.8 for explanation on development of load values.

 $2 \hspace{0.1in} \text{See section 3.1.8.6 to convert design strength (factored resistance) value to ASD value.}$

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Tabular values represent a single anchor without reductions for edge distance, anchor spacing, or concrete thickness. Shaded cells indicate that bond strength is the controlling failure mode. Compare to the steel values in Table 17. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 55° C, max. long term temperature = 43° C. For temperature range B: Max. short term temperature = 80° C, max. long term temperature = 43° C multiply above values by 0.92. For temperature range C: Max. short term temperature = 120° C, max. long term temperature = 72° C multiply above values by 0.78. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_a as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.

9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete.

Table 16 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for threaded rod in cracked concrete ^{1,2,3,4,5,6,7,8,9}

Nominal			Tension	$-\phi N_n$		Shear — φV _n				
anchor diameter mm	Effective embedment mm	f′ _c = 25 MPa kN	f′ _c = 30 MPa kN	f' _c = 40 MPa kN	f′ _c = 50 MPa kN	f′ _c = 25 MPa kN	f' _c = 30 MPa kN	f' _c = 40 MPa kN	f′ _c = 50 MPa kN	
	60	8.1	8.3	8.5	8.7	8.8	8.9	9.2	9.4	
10	90	12.2	12.4	12.8	13.1	26.3	26.8	27.6	28.2	
10	120	16.3	16.6	17.1	17.4	35.1	35.7	36.8	37.6	
	200	27.1	27.6	28.4	29.1	58.4	59.5	61.3	62.6	
	70	11.4	11.6	11.9	12.2	24.5	25.0	25.7	26.3	
10	108	17.6	17.9	18.4	18.8	37.9	38.6	39.7	40.6	
12	144	23.4	23.9	24.6	25.1	50.5	51.4	52.9	54.1	
	240	39.1	39.8	41.0	41.9	84.2	85.7	88.2	90.2	
	80	16.5	18.0	18.5	18.9	35.6	38.7	39.8	40.7	
10	144	31.7	32.3	33.3	34.0	68.4	69.6	71.7	73.3	
16 -	192	42.3	43.1	44.4	45.4	91.2	92.8	95.6	97.7	
	320	70.5	71.8	73.9	75.6	152.0	154.7	159.3	162.9	
	90	19.7	21.6	24.9	26.6	42.4	46.5	53.7	57.3	
00	180	49.6	50.5	52.0	53.2	106.8	108.8	112.0	114.5	
20	240	66.1	67.4	69.3	70.9	142.5	145.1	149.3	152.7	
	400	110.2	112.3	115.5	118.1	237.4	241.8	248.8	254.5	
	96	21.7	23.8	27.5	28.8	46.7	51.2	59.1	62.0	
0.1	216	60.4	61.6	63.3	64.8	130.2	132.6	136.4	139.5	
24	288	80.6	82.1	84.5	86.4	173.6	176.8	181.9	186.0	
	480	134.3	136.8	140.8	144.0	289.3	294.6	303.2	310.1	
	108	25.9	28.4	32.8	36.6	55.8	61.1	70.6	78.9	
07	243	77.9	79.3	81.6	83.5	167.8	170.8	175.8	179.8	
27	324	103.8	105.8	108.8	111.3	223.7	227.8	234.4	239.7	
	540	173.1	176.3	181.4	185.5	372.8	379.6	390.7	399.5	
	120	30.3	33.2	38.4	42.9	65.3	71.6	82.6	92.4	
20	270	96.2	97.9	100.8	103.1	207.1	210.9	217.1	222.0	
30	360	128.2	130.6	134.4	137.4	276.1	281.2	289.4	296.0	
	600	213.7	217.6	224.0	229.0	460.2	468.7	482.4	493.3	

1 See section 3.1.8 for explanation on development of load values.

2 See section 3.1.8.6 to convert design strength (factored resistance) value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Tabular values represent a single anchor without reductions for edge distance, anchor spacing, or concrete thickness. Shaded cells indicate that bond strength is the controlling failure mode. Compare to the steel values in Table 17. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 55° C, max. long term temperature = 43° C. For temperature range B: Max. short term temperature = 80° C, max. long term temperature = 43° C multiply above values by 0.92. For temperature range C: Max. short term temperature = 120° C, max. long term temperature = 72° C multiply above values by 0.78. Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete, multiply design strength (factored resistance) by λ_a as follows: For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$.

9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values in tension and shear by the following reduction factors: 10 mm to 20 mm diameter - α_{seis} = 0.60, 25 mm diameter α_{seis} = 0.64, 28 mm - α_{seis} = 0.68

32 mm diameter - $\alpha_{seis} = 0.75$ See section 3.1.8.7 for additional information on seismic applications.

Table 17 - Steel design strength for Hilti HIT-V threaded rods¹

		HIT-V			HIT-V			HIT-V-R			HIT-V-HCR	ł	
	ISO 8	398-1 Class	3 5.8⁵	ISO 898-1 Class 8.8 ⁵			ISO 3506-1 Class A4 stainless ⁵			High corr	High corrosion resistant steel5		
Nominal anchor diameter mm	Tensile² φN _{sa} kN	Shear³ φV _{sa} kN	Seismic Shear ⁴ ¢V _{sa,eq} kN	Tensile² ¢N _{sa} kN	Shear³ φV _{sa} kN	Seismic Shear ⁴ ¢V _{sa,eq} kN	Tensile² ¢N _{sa} kN	Shear ³ φV _{sa} kN	Seismic Shear ⁴ $\phi V_{sa,eq}$ kN	Tensile² φN _{sa} kN	Shear³ φV _{sa} kN	Seismic Shear ⁴ $\phi V_{sa,eq}$ kN	
10	18.9	8.7	6.1	30.2	13.8	9.7	26.4	12.2	8.5	30.2	13.9	9.7	
12	27.3	15.3	10.7	43.9	24.3	17.0	38.4	21.2	14.9	43.8	24.3	17.0	
16	51.0	28.2	19.7	81.6	45.3	31.7	71.4	39.5	27.7	81.6	45.2	31.7	
20	79.6	44.1	30.9	127.4	70.5	49.4	111.5	61.7	43.2	127.4	70.6	49.4	
25	114.7	63.6	44.5	183.6	101.7	71.2	160.6	89.0	62.3	160.6	89.0	62.3	
28	149.2	82.5	57.8	238.6	132.3	92.6	119.0	65.9	46.2	208.8	115.7	81.0	
30	182.3	101.1	70.8	291.9	161.7	113.2	145.5	80.6	56.4	255.3	141.4	99.0	

1 See Section 3.1.8.6 to convert design strength value to ASD value.

2 Tensile = $\phi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17 3 Shear = $\phi 0.60 A_{se,V} f_{uta}$ as noted in ACI 318-14 Chapter 17. 4 Seismic Shear = $\alpha_{vseis} \phi V_{sa}$: Reduction for seismic shear only. See ACI 318-14 Chapter 17 for additional information on seismic applications

5 HIT-V threaded rods are considered brittle steel elements.

Hilti HIT-HY 200 with Hilti HIS-N inserts

Figure 12 - HIS-N and HIS-RN internally threaded insert installation conditions

Table 18 - HIS-N and HIS-RN specifications

Setting information		Symbol	Units		Nominal I	oolt/cap screw	diameter	
Setting information			Offics	8	10	12	16	20
Outside diameter of inser	t		mm	12.5	16.5	20.5	25.4	27.6
Nominal bit diameter		d。	mm	14	18	22	28	32
Effective embedment		h _{ef}	mm	90	110	125	170	205
Thread angegement	minimum	h	mm	8	10	12	16	20
Thread engagement	maximum	h _s	mm	20	25	30	40	50
Installation torque	•	T _{inst}	Nm	10	20	40	80	150
Minimum concrete member thickness		h _{min}	mm	120	150	170	230	270
Minimum edge distance		C _{min}	mm	63	83	102	127	140
Minimum anchor spacing		S _{min}	mm	63	83	102	127	140

Figure 13 - HIS-N and HIS-RN specifications

Table 19 - Hilti HIT-HY 200 adhesive design strength with concrete / bond failure for Hilti HIS-N and HIS-RN internally threaded inserts in uncracked concrete^{1,2,3,4,5,6,7,8}

Internal	Effective		Tension -	φN _n or N _r		Shear - ϕV_n or V_r				
thread	embed	()	(1			(,	(/	() (0.14D	<i>(</i> ,	
diameter	depth	$f_{c} = 25 \text{ MPa}$	$f_{c} = 30 \text{ MPa}$	<i>f</i> ′ _c = 40 MPa	$f_{c} = 50 \text{ MPa}$	$f_c = 25 \text{ MPa}$	$f_c = 30 \text{ MPa}$	$f_{c} = 40 \text{ MPa}$	$f_{c} = 50 \text{ MPa}$	
mm	mm	kN	kN	kN	kN	kN	kN	kN	kN	
8	90	27.4	27.9	28.7	29.4	59.1	60.2	61.9	63.3	
10	110	37.5	41.1	46.4	47.4	80.8	88.5	99.9	102.1	
12	125	45.4	49.8	57.5	64.2	97.8	107.2	123.7	138.3	
16	170	72.0	78.9	91.1	101.9	155.2	170.0	196.3	219.4	
20	205	95.4	104.5	120.7	134.9	205.5	225.1	259.9	290.6	

Table 20 - Hilti HIT-HY 200 adhesive design strength with concrete / bond Failure for Hilti HIS-N and HIS-RN internally threaded inserts in cracked concrete^{1,2,3,4,5,6,7,8,9}

Internal	Effective Tension - φN _n or N _r						Shear - ϕV_n or V_r				
thread diameter mm	embed. depth mm	f' _c = 25 MPa kN	f' _c = 30 MPa kN	f' _c = 40 MPa kN	f' _c = 50 MPa kN	f′ _c = 25 MPa kN	f' _c = 30 MPa kN	f' _c = 40 MPa kN	f' _c = 50 MPa kN		
8	90	15.3	15.5	16.0	16.4	32.9	33.5	34.5	35.2		
10	110	25.0	25.5	26.2	26.8	53.9	54.9	56.5	57.7		
12	125	32.2	35.3	37.0	37.8	69.5	76.1	79.7	81.5		
16	170	50.3	51.3	52.8	54.0	108.4	110.4	113.7	116.2		
20	205	67.2	68.4	70.4	72.0	144.7	147.3	151.6	155.1		

1 See section 3.1.8 for explanation on development of load values.

2 See section 3.1.8.6 to convert design strength (factored resistance) value to ASD value.

3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.

4 Tabular values represent a single anchor without reductions for edge distance, anchor spacing, or concrete thickness. Shaded cells indicate that bond strength is the controlling failure mode. Compare to the steel values in Table 21. The lesser of the values is to be used for the design.

5 Data is for temperature range A: Max. short term temperature = 55° C, max. long term temperature = 43° C. For temperature range B: Max. short term temperature = 80° C, max. long term temperature = 43° C multiply above values by 0.92. For temperature range C: Max. short term temperature = 120° C, max. long term temperature = 72° C multiply above values by 0.78. Short-term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.

6 Tabular values are for dry concrete conditions. For water saturated concrete multiply design strength (factored resistance) by 0.85.

7 Tabular values are for short term loads only. For sustained loads including overhead use, see section 3.1.8.8.

8 Tabular values are for normal-weight concrete only. For lightweight concrete multiply design strength (factored resistance) by λ_n as follows:

For sand-lightweight, $\lambda_a = 0.51$. For all-lightweight, $\lambda_a = 0.45$. 9 Tabular values are for static loads only. Seismic design is not permitted for uncracked concrete. For seismic loads, multiply cracked concrete tabular values in

tension and shear by α_{sels} = 0.60. See section 3.1.8.7 for additional information on seismic applications.

Table 21 - Steel design strength for steel bolt / cap screw for Hilti HIS-N and HIS-RN internally threaded inserts^{1,2,3}

	ISC	0 898-1 Class	8.8	ISO 3056-1 (Class A4-70 St	tainless Steel
Internal thread diameter mm	Tensile⁴ φN _{sa} kN	Shear⁵ φV _{sa} kN	Seismic Shear⁴ φV _{sa,eq} kN	Tensile⁴ φN _{sa} kN	Shear⁵ φV _{sa} kN	Seismic Shear⁴ ¢V _{sa,eq} kN
8	19.2	10.5	7.4	16.6	9.3	6.5
10	30.2	16.8	11.8	26.3	14.7	10.3
12	43.9	24.3	17.0	38.4	21.3	14.9
16	81.6	45.3	31.7	71.5	39.6	17.7
20	125.5	70.5	49.4	111.5	61.8	43.3

1 See section 3.1.8.6 to convert design strength (factored resistance) value to ASD value.

2 Hilti HIS-N and HIS-RN inserts with steel bolts are to be considered brittle steel elements.

3 Table values are the lesser of steel failure in the HIS-N insert or inserted steel bolt.

4 Tensile = $\varphi A_{se,N} f_{uta}$ as noted in ACI 318-14 Chapter 17.

5 Shear values determined by static shear tests with $\varphi V_{sa} \le \varphi 0.60 A_{se,v} f_{uta}$ as noted in ACI 318-14 Chapter 17.

6 Seismic Shear = $\alpha_{V_{seis}} \phi V_{sa}$: Reduction for seismic shear only. See section 3.1.8.7 for additional information on seismic applications.

3.2.3.3 Development and splicing of post-installed reinforcement

Calculations for post-installed rebar for typical development lengths may be done according to ACI 318-14 Chapter 25 (formerly ACI 318-11 Chapter 12) adhesive anchors tested and approved in accordance with AC 308. This section contains tables for the data provided in ICC Evaluation Services ESR-3187. Refer to section 3.1.14 and the Hilti North America Post-Installed Reinforcing Bar Guide for the design method.

Table 22 - Calculated tension development and Class B splice lengths for BS 4449 Grade B 500B in walls, slabs, columns,
and footings per ACI 318-14 Chapter 25 for Hilti HIT-HY 200 - SDC A and B only ^{3,4,5,6,7}

	Sys	tem				f' _c = 2	5 Mpa	f' _c = 3	0 Mpa	f' _c = 4	0 Mpa	f' _c = 5	0 Mpa
Rebar size	НІТ-НҮ 200-А	НІТ-НҮ 200-R	$\frac{c_{b} + K_{tr}}{d_{b}}$	Minimum edge dist. mm ¹	Minimum spacing mm²	ℓ _d mm	Class B splice mm						
8	0	Ð		50	40	310	310	310	310	310	310	310	310
10	0	Ð		60	50	310	380	310	350	310	310	310	310
12	0	O		60	60	350	460	320	420	310	360	310	310
16	0	Ð	2.5	70	80	470	610	430	550	370	480	330	430
20	0	O		90	100	730	940	660	860	580	750	520	670
25		Ð		110	125	910	1180	830	1080	720	930	640	840
32		Ð		130	160	1160	1510	1060	1380	920	1190	820	1070

• Applicable for use with special installation provisions and installation temperature restrictions to account for short gel time with deep embedment depth. See the Instruction For Use (IFU), packaged with the product for special installation parameters.

Not recommended due to limited gel time of adhesive.

1 Edge distances are determined using the minimum cover specified by ESR-3187 with an additional 6% of the development length per suggestions for drilling without an aid per Hilti Post-Installed Reinforcing Bar Guide Section 3.3. Smaller edge distances may be possible, for which development and splice lengths may need to be recalculated. For further information on required cover see ACI 318-14, Sec. 20.6.1.3; see Sec. 2.2 for determination of c_h.

2 Spacing values represent those producing c_b =5 d_b rounded up to the nearest 10 mm. Smaller spacing values may be possible, for which development and splice lengths may need to be recalculated. For further information on required spacing see ACI 318-14 Sec. 25.2; see Sec. 2.2 for determination of c_b.

3 ψ_{t} = 1.0 See ACI 318-14, Sec. 25.4.2.4.

4 ψ_{a} = 1.0 for non-epoxy coated bars. See ACI 318-14, Sec. 25.4.2.4.

5 ψ = 0.8 for 16 mm bars and smaller bars, 1.0 for 20 mm and larger bars. See ACI 318-14, Sec. 25.4.2.4.

6 Values are for normal weight concrete. For sand-lightweight concrete, multiply development and splice lengths by 1.18, for all-lightweight concrete multiply development and splice lengths by 1.33. See ACI 318-14 Sec. 19.2.4.

7 Development and splice length values are for static design. Seismic design development and splice lengths can be found in ACI 318-14 18.8.5 for special moment frames and ACI 318-14 18.10.2.3 for special structural walls. For further information about reinforcement in seismic design, see ACI 318-14 Ch. 18.
Description of the length values are for special structural walls. For further information about reinforcement in seismic design, see ACI 318-14 Ch. 18.

8 Refer to the Hilti North America Post-Installed Reinforcing Bar Guide for further explanation, background information, and design examples.

3.2.3.4 Installation instructions

Installation Instructions For Use (IFU) are included with each product package. They can also be viewed or downloaded online at www.us.hilti.com (US). Because of the possibility of changes, always verify that downloaded IFU are current when used. Proper installation is critical to achieve full performance. Training is available on request. Contact Hilti Technical Services for applications and conditions not addressed in the IFU.

				ionang anto (a	,			
∎ HIT-HY 200-A								
06			S		T-Z ¹			
[°C]	[°F]	twork	t _{cure}	twork	t _{cure}			
-105	1423	1.5 h	7 h	-	-			
-40	2432	50 min	4 h	-	-			
15	3341	25 min	2 h	-	-			
610	4250	15 min	1.25 h	15 min	1.25 h			
1120	5168	7 min	45 min	7 min	45 min			
2130	6986	4 min	30 min	4 min	30 min			
3140	87104	3 min	30 min	3 min	30 min			

Figure 14 - HIT-HY 200 adhesive cure time and working time (approx.)

	HIT-HY 200-R							
					T-Z ¹			
[°C]	[°F]	twork	t _{cure}	twork	t _{cure}			
-105	1423	3 h	20 h	-	-			
-40	2432	2 h	8 h	-	-			
15	3341	1 h	4 h	_	-			
610	4250	40 min	2.5 h	40 min	2.5 h			
1120	5168	15 min	1.5 h	15 min	1.5 h			
2130	6986	9 min	1 h	9 min	1 h			
3140	87104	6 min	1 h	6 min	1 h			

It is permitted to install Hilti HIT-HY 200 with HIT-Z anchor rod down to 14° F (-10° C) provided the drilled hole has the drilling dust fully removed. This can be done with Hilti TE-CD or TE-YD hollow drill bit or with cleaning procedures used with standard threaded rod.

Resistance of cured Hilti HIT-HY 200 to chemicals

Acetic acid10%+Acetone•Ammonia5%+Benzyl alcohol-Hydrochloric acid10%•Chlorinated lime10%+Citric acid10%+Concrete plasticizer+De-icing salt (Calcium chloride)+Demineralized water+Diesel fuel+Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formwork oil+Gasoline+Glycole0Hydrogen peroxide10%Lactic acid10%Nitric acid10%Phosphoric acid10%Phosphoric acid10%Sea water+Sea water+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene0Sofium10%	Chemical		Behavior
Ammonia5%+Benzyl alcohol-Hydrochloric acid10%•Chlorinated lime10%+Citric acid10%+Concrete plasticizer-+De-icing salt (Calcium chloride)++Demineralized water++Diesel fuel-+Drilling dust suspension pH 13.2+Ethanol96%-Ethylacetate-Formwork oil+Gasoline+Glycole•Hydrogen peroxide10%Nitric acid10%Phosphoric acid10%Phosphoric acid10%Sea water+Sea water+Sedium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene-Toluene-	Acetic acid	10%	+
Benzyl alcohol-Hydrochloric acid10%-Chlorinated lime10%+Citric acid10%+Concrete plasticizer+De-icing salt (Calcium chloride)+Demineralized water+Diesel fuel+Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formic acid10%+Gasoline+Glycole0Hydrogen peroxide10%Hydrogen peroxide10%Nitric acid10%Phosphoric acid10%Phosphoric acid10%Sea water+Sea water+Sodium carbonate 10%10%Hufloge+Sodium hypochlorite 2%2%Sulphuric acid10%Toluene-Toluene-	Acetone		•
Hydrochloric acid10%Chlorinated lime10%Chlorinated lime10%Citric acid10%Concrete plasticizer+De-icing salt (Calcium chloride)+De-inig salt (Calcium chloride)+Demineralized water+Diesel fuel+Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formic acid10%Formic acid10%Hydrogen peroxide10%Hydrogen peroxide10%Lactic acid10%Nitric acid10%Phosphoric acid10%Phosphoric acid10%Sea water+Sea water+Sedium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene-	Ammonia	5%	+
Chlorinated lime10%+Citric acid10%+Concrete plasticizer+De-icing salt (Calcium chloride)+Demineralized water+Diesel fuel+Diesel fuel+Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formic acid10%+Gasoline+Glycole•Hydrogen peroxide10%Lactic acid10%+Methylethylketon•Nitric acid10%+Phosphoric acid10%+Sea water+Sea water+Sodium carbonate 10%10%+Sulphuric acid10%+Sulphuric acid10%+Soliue10%+Soliue10%+Solium hypochlorite 2%2%+Sulphuric acid10%+Soliuene10%+	Benzyl alcohol		-
Citric acid10%+Concrete plasticizer+De-icing salt (Calcium chloride)+Demineralized water+Diesel fuel+Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formic acid10%Formwork oil+Gasoline+Hydrogen peroxide10%Lactic acid10%Nitric acid10%Phosphoric acid10%Phosphoric acid10%Sea water+Sea water+Sodium carbonate 10%10%Sulphuric acid10%Toluene-Toluene-	Hydrochloric acid		•
Concrete plasticizer+De-icing salt (Calcium chloride)+Demineralized water+Diesel fuel+Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formic acid10%Formwork oil+Gasoline+Hydrogen peroxide10%Hydrogen peroxide10%Nitric acid10%Phosphoric acid10%Phosphoric acid10%Sea water+Sea water+Sodium carbonate 10%10%Sulphuric acid10%10%+Sulphuric acid10%Toluene-Foluene- <td>Chlorinated lime</td> <td>10%</td> <td>+</td>	Chlorinated lime	10%	+
De-icing salt (Calcium chloride)+Demineralized water+Diesel fuel+Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formic acid10%Formwork oil+Gasoline+Hydrogen peroxide10%Lactic acid10%Nitric acid10%Phosphoric acid10%Phosphoric acid10%Sea water+Sea water+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene-		10%	+
chloride)+Demineralized water+Diesel fuel+Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formic acid10%Formwork oil+Gasoline+Hydrogen peroxide10%Hydrogen peroxide10%Nitric acid10%Phosphoric acid10%Phosphoric acid10%Sea water+Sea water+Sodium carbonate 10%10%Sulphuric acid10%10%+Sulphuric acid10%10%+Sulphuric acid10%Toluene-Foluene- <td>Concrete plasticizer</td> <td></td> <td>+</td>	Concrete plasticizer		+
chloride)Demineralized water+Diesel fuel+Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formic acid10%Formwork oil+Gasoline+Glycole0Hydrogen peroxide10%Lactic acid10%Nitric acid10%Phosphoric acid10%Phosphoric acid10%Sea water+Sea water+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene-			+
Diesel fuel+Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formic acid10%Formwork oil+Gasoline+Glycole•Hydrogen peroxide10%Lactic acid10%Maschinery oil+Methylethylketon•Nitric acid10%Phosphoric acid10%Phosphoric acid10%Potassium Hydroxide pH 13.2+Sea water+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene•			
Drilling dust suspension pH 13.2+Ethanol96%Ethylacetate-Formic acid10%Formwork oil+Gasoline+Glycole•Hydrogen peroxide10%Lactic acid10%Maschinery oil+Methylethylketon•Nitric acid10%Phosphoric acid10%Phosphoric acid10%Potassium Hydroxide pH 13.2+Sea water+Sewage sludge+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene•			+
pH 13.2+Ethanol96%Ethylacetate-Formic acid10%Formwork oil+Gasoline+Glycole•Hydrogen peroxide10%Lactic acid10%Maschinery oil+Methylethylketon•Nitric acid10%Phosphoric acid10%Phosphoric acid10%Phassium Hydroxide+Sea water+Sea water+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene•			+
pH 13.2Ethanol96%Ethylacetate-Formic acid10%Formwork oil+Gasoline+Glycole•Hydrogen peroxide10%Lactic acid10%Maschinery oil+Methylethylketon•Nitric acid10%Phosphoric acid10%Phosphoric acid10%Potassium Hydroxide+Sea water+Sedium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene•	e i		+
Ethylacetate-Formic acid10%+Formwork oil+Gasoline+Glycole•Hydrogen peroxide10%+Lactic acid10%+Maschinery oil+Methylethylketon•Nitric acid10%+Phosphoric acid10%+Potassium Hydroxide pH 13.2+Sea water+Sodium carbonate 10%10%+Sodium hypochlorite 2%2%+Sulphuric acid10%+Toluene••	1		
Formic acid10%+Formwork oil+Gasoline+Glycole•Hydrogen peroxide10%•Lactic acid10%+Maschinery oil+Methylethylketon•Nitric acid10%+Phosphoric acid10%+Potassium Hydroxide pH 13.2+Sea water+Sewage sludge+Sodium carbonate 10%10%+Sodium hypochlorite 2%2%+Sulphuric acid10%+Toluene••		96%	
Formwork oil+Gasoline+Glycole•Hydrogen peroxide10%Lactic acid10%Maschinery oil+Methylethylketon•Nitric acid10%Phosphoric acid10%Phosphoric acid10%Phosphoric acid10%Potassium Hydroxide+Sea water+Sewage sludge+Sodium carbonate 10%10%Sulphuric acid10%Toluene•			-
Gasoline+Glycole•Hydrogen peroxide10%Lactic acid10%Maschinery oil+Methylethylketon•Nitric acid10%Phosphoric acid10%Phosphoric acid10%Phosphoric acid10%Phosphoric acid10%Phosphoric acid10%Potassium Hydroxide pH 13.2+Sea water+Sewage sludge+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene•	Formic acid	10%	+
GlycoleImage: scalar stress of the stress of th	Formwork oil		+
Hydrogen peroxide10%Lactic acid10%Lactic acid10%Maschinery oil+Methylethylketon•Nitric acid10%Phosphoric acid10%Phosphoric acid10%Phosphoric acid10%Phosphoric acid10%Potassium Hydroxide pH 13.2+Sea water+Sewage sludge+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene•	Gasoline		+
Lactic acid10%+Maschinery oil+Methylethylketon•Nitric acid10%•Phosphoric acid10%+Potassium Hydroxide pH 13.2+Sea water+Sewage sludge+Sodium carbonate 10%10%+Sodium hypochlorite 2%2%Sulphuric acid10%+Toluene••	Glycole		•
Maschinery oil+Methylethylketon•Nitric acid10%Phosphoric acid10%Phosphoric acid10%Potassium Hydroxide pH 13.2+Sea water+Sewage sludge+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene•	Hydrogen peroxide	10%	•
Methylethylketon•Nitric acid10%Phosphoric acid10%Phosphoric acid10%Potassium Hydroxide pH 13.2+Sea water+Sewage sludge+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene•	Lactic acid	10%	+
Nitric acid10%Phosphoric acid10%Potassium Hydroxide pH 13.2+Sea water+Sewage sludge+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene•	Maschinery oil		+
Phosphoric acid10%+Potassium Hydroxide pH 13.2+Sea water+Sewage sludge+Sodium carbonate 10%10%+Sodium hypochlorite 2%2%+Sulphuric acid10%+Toluene••	Methylethylketon		•
Potassium Hydroxide pH 13.2+Sea water+Sewage sludge+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%30%+Toluene•	Nitric acid	10%	•
pH 13.2TSea water+Sewage sludge+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%Toluene-		10%	+
Sea water+Sewage sludge+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%30%+Toluene•			+
Sewage sludge+Sodium carbonate 10%10%Sodium hypochlorite 2%2%Sulphuric acid10%30%+Toluene•			+
Sodium carbonate 10%10%+Sodium hypochlorite 2%2%+Sulphuric acid10%+Toluene••			
Sodium hypochlorite 2%2%+Sulphuric acid10%+30%+-Toluene••		10%	
Sulphuric acid10%+30%+Toluene•			
Sulphuric acid 30% + Toluene •	<u>,</u>		
	Sulphuric acid		
	Toluene		•
Xylene •	Xylene		•

Key: - non-resistant

+ resistant

limited resistance

Samples of the HIT-HY 200 adhesive were immersed in the various chemical compounds for up to one year. At the end of the test period, the samples were analyzed. Any samples showing no visible damage and having less than a 25% reduction in bending (flexural) strength were classified as "Resistant." Samples that had slight damage, such as small cracks, chips, etc. or reduction in bending strength of 25% or more were classified as "Limited Resistance" (i.e. exposed for 48 hours or less until chemical is cleaned up). Samples that were heavily damaged or destroyed were classified as "Non-Resistant."

Note: In actual use, the majority of the adhesive is encased in the base material, leaving very little surface area exposed.

3.2.3.5 Ordering information

HIT-HY 200-R

Hilti HIT-Z anchor rod

Description	Base plate clearance hole	Anchor length	Qty	Item number
HIT-Z M8x80	9 mm	80 mm	40 pc	2018364
HIT-Z M8x100	9 mm	100 mm	40 pc	2018365
HIT-Z M8x120	9 mm	120 mm	40 pc	2018366
HIT-Z M10x95	12 mm	95 mm	40 pc	2018367
HIT-Z M10x115	12 mm	115 mm	40 pc	2018368
HIT-Z M10x135	12 mm	135 mm	40 pc	2018369
HIT-Z M10x160	12 mm	160 mm	40 pc	2018410
HIT-Z M12x105	14 mm	105 mm	20 pc	2018411
HIT-Z M12x140	14 mm	140 mm	20 pc	2018412
HIT-Z M12x155	14 mm	155 mm	20 pc	2018413
HIT-Z M12x196	14 mm	196 mm	20 pc	2018415
HIT-Z M16x155	18 mm	155 mm	12 pc	2018416
HIT-Z M16x175	18 mm	175 mm	12 pc	2018417
HIT-Z M16x205	18 mm	205 mm	12 pc	2018418
HIT-Z M16x240	18 mm	240 mm	12 pc	2018419
HIT-Z M20x215	22 mm	215 mm	6 pc	2018420
HIT-Z M20x250	22 mm	250 mm	6 pc	2018421
HIT-HY 200-R adhesive				
Description	Package contents		Qty	Item number
HIT-HY 200-R 500/2/EE	Includes (1) foil pack w	ith (2) mixer and (1) mixer extension	1 pc	2045032

TE-CD hollow drill bits

Order Description	Working length	Item number
Hollow drill bit TE-CD 12/33	200 mm	2018940
Hollow drill bit TE-CD 16/37	240 mm	2018945
Hollow drill bit TE-CD 18/37	240 mm	2018946

TE-YD hollow drill bits

Order Description	Working length	Item number
Hollow drill bit TE-YD 16/59	400 mm	2018956
Hollow drill bit TE-YD 18/59	400 mm	2018957
Hollow drill bit TE-YD 20/59	400 mm	2018959
Hollow drill bit TE-YD 22/59	400 mm	2018960
Hollow drill bit TE-YD 25/59	400 mm	2018962
Hollow drill bit TE-YD 28/59	400 mm	2018964
Hollow drill bit TE-YD 32/59	400 mm	2018966

For ordering information on anchor rods and inserts, dispensers, hole cleaning equipment and other accessories, see section 3.2.9.