

# HIT-RE 10 INJECTION MORTAR

**Technical Datasheet** 

Update: Jan-23



## Hilti HIT-RE 10 injection mortar

Anchor design (EN 1992-4) / Rods and Sleeves / Concrete

## Injection mortar system



Hilti HIT-RE 10 580 ml hard cartridge

HAS-U (M8-M30)

#### **Benefits**

- Suitable for non-cracked concrete C20/25 to C50/60
- Suitable for dry and water saturated concrete
- Suitable for overhead fastenings

#### **Base material**



Concrete

(non-cracked)





Dry concrete Wet

Wet concrete



Static/ quasi-static

## **Installation conditions**





Hammer drilling

Variable embedment depth

#### Approvals / certificates

| Description             | Authority / Laboratory | No. / date of issue |
|-------------------------|------------------------|---------------------|
| Hilti Technical Data a) | Hilti                  | 2017-11-28          |

a) All data given in this section according to Hilti Technical Data



## Static and quasi-static loading (for a single anchor)

#### All data in this section applies to

- Correct setting (see setting instruction)
- No edge distance and spacing influence
- Steel failure
- Base material thickness, as specified in the tables
- Embedment depth, as specified in the tables
- One anchor material, as specified in the tables
- Concrete C20/25, fck,cube = 25 N/mm²
- In-service temperature range I (min. base material temperature -40°C, max. long/short term base material temperature: +24°C/+40°C)

## Embedment depth a) and base material thickness for M8-M12

| Anchor size             |                 |      |     | M   | 18  |     | M10 M12 |     |     | 12  |     |     |     |     |
|-------------------------|-----------------|------|-----|-----|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|
| Embedment depth b)      | h <sub>ef</sub> | [mm] | 60  | 80  | 120 | 160 | 60      | 100 | 150 | 200 | 70  | 120 | 180 | 240 |
| Base material thickness | h               | [mm] | 100 | 110 | 150 | 190 | 100     | 130 | 180 | 230 | 100 | 150 | 210 | 270 |

#### Embedment depth a) and base material thickness for M16-M20

| Anchor size             |                 |      | M16 |     |     |     | M20 |     |     |     |
|-------------------------|-----------------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| Embedment depth b)      | h <sub>ef</sub> | [mm] | 80  | 160 | 240 | 320 | 90  | 200 | 300 | 400 |
| Base material thickness | h               | [mm] | 112 | 192 | 272 | 352 | 130 | 240 | 340 | 440 |

- a) The allowed range of embedment depth is shown in the setting details
- b) Recommended loads calculated for embedment depths  $h_{ef} = h_{ef,min}$ ;  $h_{ef} = 10d$ ;  $h_{ef} = 15d$ ;  $h_{ef} = h_{ef,max} = 20d$

#### Recommended loads for M8-M12

| Anchor size          |           |                  | M8   |     |     | M10 |     |     | M12  |      |      |     |      |      |      |
|----------------------|-----------|------------------|------|-----|-----|-----|-----|-----|------|------|------|-----|------|------|------|
| Non-cracked concrete |           |                  |      |     |     |     |     |     |      |      |      |     |      |      |      |
| Tension              | HAS-U 5.8 | N <sub>rec</sub> | [kN] | 5,1 | 6,8 | 8,7 | 8,7 | 6,4 | 10,7 | 13,8 | 13,8 | 9,0 | 15,4 | 20,1 | 20,1 |
| Shear                | HAS-U 5.8 | V <sub>rec</sub> | [kN] | 5,2 |     |     | 8,3 |     |      | 12,0 |      |     |      |      |      |

#### Recommended loads for M16-M20

| Anchor size |              |                  |      | M16  |      |      |      | M20  |      |      |      |
|-------------|--------------|------------------|------|------|------|------|------|------|------|------|------|
| Non-cracl   | ked concrete |                  |      |      |      |      |      |      |      |      |      |
| Tension     | HAS-U 5.8    | N <sub>rec</sub> | [kN] | 12,0 | 27,3 | 37,4 | 37,4 | 14,3 | 42,7 | 58,3 | 58,3 |
| Shear       | HAS-U 5.8    | V <sub>rec</sub> | [kN] | 22,4 |      |      | 35,0 |      |      |      |      |



## **Materials**

## **Mechanical properties**

| Anchor size                       |           |                   |           | M8   | M10  | M12  | M16 |
|-----------------------------------|-----------|-------------------|-----------|------|------|------|-----|
| None in all to a sile at a series | HAS-U 5.8 |                   |           | 500  | 500  | 500  | 500 |
|                                   | HAS-U 8.8 | -<br>f.           | [N]/mm2]  | 800  | 800  | 800  | 800 |
| Nominal tensile strength          | HAS-U-R   | - f <sub>uk</sub> | [N/mm²]   | 700  | 700  | 700  | 700 |
|                                   | HAS-U-HCR | _                 |           | 800  | 800  | 800  | 800 |
|                                   | HAS-U 5.8 |                   | [N/mm²] - | 400  | 400  | 400  | 400 |
| Viold atropath                    | HAS-U 8.8 | <b>.</b>          |           | 640  | 640  | 640  | 640 |
| Yield strength                    | HAS-U-R   | - f <sub>yk</sub> |           | 450  | 450  | 450  | 450 |
|                                   | HAS-U-HCR | _                 |           | 640  | 640  | 640  | 640 |
| Stressed cross-section            | HAS-U     | As                | [mm²]     | 36,6 | 58,0 | 84,3 | 157 |
| Moment of resistance              | HAS-U     | W                 | [mm³]     | 31,2 | 62,3 | 109  | 277 |

## Material quality for HAS-U

| Material quality for HAS-C |                                                                                |
|----------------------------|--------------------------------------------------------------------------------|
| Part                       | Material                                                                       |
| Zinc coated steel          |                                                                                |
| Threaded rod,              | Strength class 5.8; Elongation at fracture A5 > 8% ductile                     |
| HAS-U 5.8 (HDG)            | Electroplated zinc coated ≥ 5μm; (HDG) hot dip galvanized ≥ 45 μm              |
| Threaded rod,              | Strength class 8.8; Elongation at fracture A5 > 12% ductile                    |
| HAS-U 8.8 (HDG)            | Electroplated zinc coated ≥ 5μm; (HDG) hot dip galvanized ≥ 45 μm              |
| Washer                     | Electroplated zinc coated ≥ 5 μm, hot dip galvanized ≥ 45 μm                   |
| Nut                        | Strength class of nut adapted to strength class of threaded rod.               |
| Nut                        | Electroplated zinc coated ≥ 5μm, hot dip galvanized ≥ 45 μm                    |
| Stainless Steel            |                                                                                |
| Threaded rod,              | Strength class 70 for M8-M20                                                   |
| HAS-U A4                   | Elongation at fracture A5 > 8% ductile                                         |
| 11/10 0 /14                | Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362                 |
| Washer                     | Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014 |
| Nut                        | Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014 |
| High corrosion resistant   | steel                                                                          |
| Threaded rod,              | Strength class 80 for M8-M20                                                   |
| HAS-U HCR                  | Elongation at fracture A5 > 8% ductile                                         |
| TIAG-0 TION                | High corrosion resistance steel 1.4529; 1.4565;                                |
| Washer                     | High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014                  |
| Nut                        | High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014                  |



#### **Setting information**

### Installation temperature range:

+5°C to +40°C

#### Service temperature range

Hilti HIT-RE 10 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

| Temperature range    | Base material temperature | Maximum long term base material temperature | Maximum short term base material temperature |  |
|----------------------|---------------------------|---------------------------------------------|----------------------------------------------|--|
| Temperature range I  | -40 °C to +43 °C          | +20 °C                                      | +43 °C                                       |  |
| Temperature range II | -40 °C to +55 °C          | +43 °C                                      | +55 °C                                       |  |

#### Maximum short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

#### Maximum long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

## Working time and curing time a):

| Temperature of the base material | Maximum working time | Minimum curing time             |
|----------------------------------|----------------------|---------------------------------|
| Т <sub>вм</sub>                  | t <sub>work</sub>    | t <sub>cure</sub> <sup>a)</sup> |
| 5°C ≤ T <sub>BM</sub> ≤ 10°C     | 5 h                  | 72 h                            |
| 10°C < T <sub>BM</sub> ≤ 15°C    | 2,5 h                | 48 h                            |
| 15°C < T <sub>BM</sub> ≤ 20°C    | 2 h                  | 36 h                            |
| 20°C < T <sub>BM</sub> ≤ 30°C    | 60 min               | 24 h                            |
| 30°C < T <sub>BM</sub> ≤ 40°C    | 30 min               | 12 h                            |

a) The curing time data are valid for dry base material only. In wet base material the curing times must be doubled.



## **Setting details**

| Anchor size                                       |                           |      | M8                | M10                              | M12 | M16 | M20                               |  |  |
|---------------------------------------------------|---------------------------|------|-------------------|----------------------------------|-----|-----|-----------------------------------|--|--|
| Nominal diameter of element                       | d                         | [mm] | 8                 | 10                               | 12  | 16  | 20                                |  |  |
| Nominal diameter of drill bit                     | $d_0$                     | [mm] | 10                | 12                               | 14  | 18  | 24                                |  |  |
| Maximum diameter of clearance hole in the fixture | df                        | [mm] | 9                 | 12                               | 14  | 18  | 22                                |  |  |
| Minimum base material thickness                   | h <sub>min</sub>          | [mm] | h <sub>ef</sub> + | h <sub>ef</sub> + 30 mm ≥ 100 mm |     |     | h <sub>ef</sub> + 2d <sub>0</sub> |  |  |
| Effective anchorage depth                         | $h_{\text{ef,min}} = h_0$ | [mm] | 60                | 60                               | 70  | 80  | 90                                |  |  |
| (= drill hole depth)                              | $h_{ef,max} = h_0$        | [mm] | 160               | 200                              | 240 | 320 | 400                               |  |  |
| Maximum torque moment                             | $T_{max}$                 | [Nm] | 10                | 20                               | 40  | 80  | 150                               |  |  |
| Minimum spacing                                   | Smin                      | [mm] | 40                | 50                               | 60  | 75  | 90                                |  |  |
| Minimum edge distance                             | Cmin                      | [mm] | 40                | 45                               | 45  | 50  | 55                                |  |  |

## Installation equipment

| Anchor size   | M8                                                | M10            | M12 | M16 | M20 |  |  |  |
|---------------|---------------------------------------------------|----------------|-----|-----|-----|--|--|--|
| Rotary hammer |                                                   | TE40 –<br>TE80 |     |     |     |  |  |  |
|               | Blow out pump (hef ≤ 10·d) -                      |                |     |     |     |  |  |  |
| Other tools   | Compressed air gunb)                              |                |     |     |     |  |  |  |
|               | Set of cleaning brushesc), dispenser, piston plug |                |     |     |     |  |  |  |

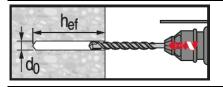
b) Compressed air gun with extension hose for all drill holes deeper than 250 mm (for M8 to M12) or deeper than 20 φ (for φ > 12 mm)

### Parameters of cleaning and setting tools

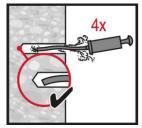
| rarameters of cleaning and |                 |                                         |                       |  |
|----------------------------|-----------------|-----------------------------------------|-----------------------|--|
|                            | Drilling an     | d cleaning                              | Installation          |  |
| HAS-U                      | Hammer drilling | Brush<br>HIT-RB                         | Piston plug<br>HIT-SZ |  |
|                            | d₀ [mm]         | size [mm]                               | size [mm]             |  |
| ининини 🗀 и                |                 | *************************************** |                       |  |
| М8                         | 10              | 10                                      | 10                    |  |
| M10                        | 12              | 12                                      | 12                    |  |
| M12                        | 14              | 14                                      | 14                    |  |
| M16                        | 18              | 18                                      | 18                    |  |
| M20                        | 24              | 24                                      | 24                    |  |
| M24                        | 28              | 28                                      | 28                    |  |
| M27                        | 30              | 30                                      | 30                    |  |
| M30                        | 35              | 35                                      | 35                    |  |

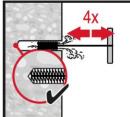
c) Automatic brushing with round brush for all drill holes deeper than 250 mm (for M8 to M12) or deeper than  $20 \cdot \phi$  (for  $\dot{\phi} > 12$  mm)

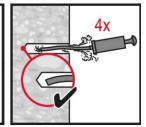



### **Setting instructions**

#### \*For detailed information on installation see instruction for use given with the package of the product.

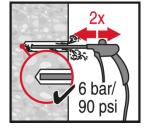




#### Safety regulations.


Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with Hilti HIT-RE 10.

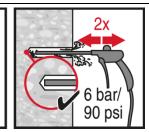


#### Hammer drilled hole



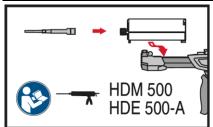


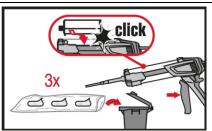




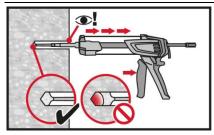

## Manual cleaning (MC)

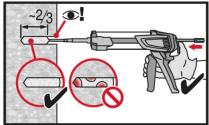
for drill diameters  $d_0 \le 20$  mm and drill hole depth  $h_0 \le 10$ ·d.



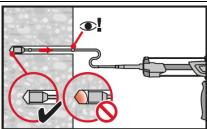



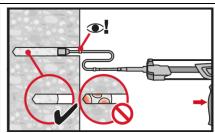




Compressed air cleaning (CAC)


for all drill hole diameters  $d_0$  and drill hole depths  $h_0 \le 20 \cdot d$ .

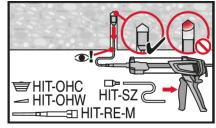


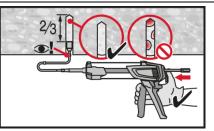




Injection system preparation.

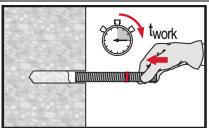


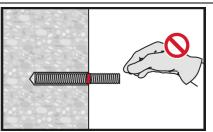



**Injection** method for drill hole depth  $h_{ef} \le 250$  mm.

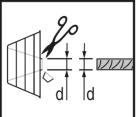


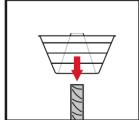


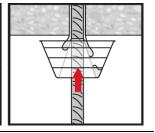


**Injection** method for drill hole depth  $h_{\text{ef}} > 250$  mm.

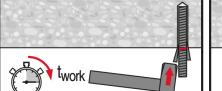




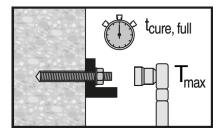


**Injection** method for overhead application.

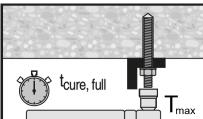



**Setting element**, observe working time "twork".










**Setting element** for overhead applications, observe working time "twork".





 $\begin{array}{l} \textbf{Apply} \text{ full load only after curing time} \\ \text{``tcure''}, \text{ applied installation torque shall not} \\ \text{exceed the values } T_{\text{max}}. \end{array}$ 



## **HIT-RE 10 injection mortar**

## Anchor design (EN 1992-4) / Rebar elements / Concrete

### Injection mortar system



Hilti HIT-RE 10 580 ml hard cartridge

#### **Benefits**

- Suitable for non-cracked concrete C20/25 to C50/60
- Suitable for dry and water saturated concrete
- Suitable for overhead fastenings



Rebar B500 B (\phi8 - \phi32)

#### **Base material**



Concrete (non-cracked)



Dry concrete



Wet concrete

## **Load condition**



Static/ quasi-static

#### Installation conditions



Hammer drilling



Variable embedment depth

#### Other information



PROFIS Engineering design Software

#### Approvals / certificates

| Description             | Authority / Laboratory | No. / date of issue |
|-------------------------|------------------------|---------------------|
| Hilti Technical Data a) | Hilti                  | 2017-11-28          |

b) All data given in this section according to Hilti Technical Data



#### Static and quasi-static loading (for a single anchor)

#### All data in this section applies to

- Correct setting
- No edge distance and spacing influence
- Steel failure
- Base material thickness, as specified in the table
- Embedment depth as specified in the table
- Anchor material, as specified in the tables
- Concrete C20/25, f<sub>ck,cube</sub> = 25 N/mm²
- In-service temperature range I

(min. base material temperature -40°C, max. long/short term base material temperature: +24°C/+40°C)

#### Embedment depth a) and base material thickness for d8-d12

| Anchor size             |                 |      | ф8  |     |     |     | φ10 |     |     |     | φ12 |     |     |     |
|-------------------------|-----------------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Embedment depth b)      | h <sub>ef</sub> | [mm] | 60  | 80  | 120 | 160 | 60  | 100 | 150 | 200 | 70  | 120 | 180 | 240 |
| Base material thickness | h               | [mm] | 100 | 110 | 150 | 190 | 100 | 130 | 180 | 230 | 100 | 150 | 210 | 270 |

## Embedment depth a) and base material thickness for d14-d20

| Anchor size             |     |      | φ14 |     |     | φ16 |     |     |     | φ20 |     |     |     |     |
|-------------------------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Embedment depth b)      | hef | [mm] | 75  | 140 | 210 | 280 | 80  | 160 | 240 | 320 | 90  | 200 | 300 | 400 |
| Base material thickness | h   | [mm] | 103 | 168 | 238 | 308 | 112 | 192 | 272 | 352 | 130 | 240 | 340 | 440 |

- a) The allowed range of embedment depth is shown in the setting details
- b) Recommended loads calculated for embedment depths  $h_{ef} = h_{ef,min}$ ;  $h_{ef} = 10d$ ;  $h_{ef} = 15d$ ;  $h_{ef} = h_{ef,max} = 20d$

#### Recommended loads for d8-d12

| Anchor siz | :e          |      |      | ф8  |     |      | φ10  |     |      | φ12  |      |     |      |      |      |
|------------|-------------|------|------|-----|-----|------|------|-----|------|------|------|-----|------|------|------|
| Non-crack  | ed concrete |      |      |     |     |      |      |     |      |      |      |     |      |      |      |
| Tension    | Rebar B500B | Nrec | [kN] | 5,1 | 6,8 | 10,3 | 13,7 | 6,4 | 10,7 | 16,0 | 21,4 | 9,0 | 15,4 | 23,1 | 30,8 |
| Shear      | Rebar B500B | Vrec | [kN] | 8,0 |     |      | 12,6 |     |      |      | 17,7 |     |      |      |      |

#### Recommended loads for d16-d20

| Anchor size |             |                  |      | φ14       |      |      | φ16  |           |      | ф20  |      |      |      |      |      |
|-------------|-------------|------------------|------|-----------|------|------|------|-----------|------|------|------|------|------|------|------|
| Non-cracke  | ed concrete |                  |      |           |      |      |      |           |      |      |      |      |      |      |      |
| Tension     | Rebar B500B | Nrec             | [kN] | 10,9      | 20,9 | 31,4 | 41,9 | 12,0      | 27,3 | 41,0 | 54,7 | 14,3 | 42,7 | 64,1 | 85,4 |
| Shear       | Rebar B500B | $V_{\text{rec}}$ | [kN] | 24,0 31,4 |      |      |      | 40,0 49,1 |      |      |      |      |      |      |      |



#### **Materials**

#### Mechanical properties for rebar B500 B

| Anchor size              |          |         | ф8   | φ10  | φ12   | φ14   | φ16   | φ20   |
|--------------------------|----------|---------|------|------|-------|-------|-------|-------|
| Nominal tensile strength | $f_{uk}$ | [N/mm²] | 550  | 550  | 550   | 550   | 550   | 550   |
| Yield strength           | $f_{yk}$ | [N/mm²] | 500  | 500  | 500   | 500   | 500   | 500   |
| Stressed cross-section   | As       | [mm²]   | 50,3 | 78,5 | 113,1 | 153,9 | 201,1 | 314,2 |
| Moment of resistance     | W        | [mm³]   | 50,3 | 98,2 | 169,6 | 269,4 | 402,1 | 785,4 |

#### **Material quality**

| Part         | Material                                                                    |
|--------------|-----------------------------------------------------------------------------|
| Rebar B500 B | Geometry and mechanical properties according to DIN 488-2:1986 or DIN 488-2 |

#### **Setting information**

## Installation temperature range:

+10°C to +40°C

#### Service temperature range

Hilti HIT-RE 10 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

| Temperature range    | Base material temperature | Maximum long term base material temperature | Maximum short term base material temperature |
|----------------------|---------------------------|---------------------------------------------|----------------------------------------------|
| Temperature range I  | -40 °C to + 43 °C         | + 20 °C                                     | + 43 °C                                      |
| Temperature range II | - 40 °C to + 55 °C        | + 43 °C                                     | + 55 °C                                      |

#### Maximum short term base material temperature

Short term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling

#### Maximum long term base material temperature

Long term elevated base material temperatures are roughly constant over significant periods of time.

## Working time and curing time a)

| Temperature of the base material                                   | Maximum working time | Minimum curing time             |
|--------------------------------------------------------------------|----------------------|---------------------------------|
| Т <sub>ВМ</sub>                                                    | t <sub>work</sub>    | t <sub>cure</sub> <sup>a)</sup> |
| $5^{\circ}C \leq T_{BM} \leq 10^{\circ}C$                          | 5 h                  | 72 h                            |
| $10^{\circ}\text{C} < \text{T}_{\text{BM}} \le 15^{\circ}\text{C}$ | 2,5 h                | 48 h                            |
| 15°C < T <sub>BM</sub> ≤ 20°C                                      | 2 h                  | 36 h                            |
| 20°C < T <sub>BM</sub> ≤ 30°C                                      | 60 min               | 24 h                            |
| 30°C < T <sub>BM</sub> ≤ 40°C                                      | 30 min               | 12 h                            |

a) The curing time data are valid for dry base material only. In wet base material, the curing times must be doubled.



## **Setting details**

| Anchor size                     |                    |      | Ø8                  | Ø10                   | Ø12       | Ø14 | Ø16                                | Ø20 |
|---------------------------------|--------------------|------|---------------------|-----------------------|-----------|-----|------------------------------------|-----|
| Nominal diameter of element     | d                  | [mm] | 8                   | 10                    | 12        | 14  | 16                                 | 20  |
| Nominal diameter of drill bit   | $d_0$              | [mm] | 10 / 12a)           | 12 / 14 <sup>a)</sup> | 14 / 16a) | 18  | 20                                 | 25  |
| Effective anchorage depth       | $h_{ef,min} = h_0$ | [mm] | 60                  | 60                    | 70        | 75  | 80                                 | 90  |
| (drill hole depth)              | $h_{ef,max} = h_0$ | [mm] | 160                 | 200                   | 240       | 280 | 320                                | 400 |
| Minimum base material thickness | h <sub>min</sub>   | [mm] | h <sub>ef</sub> + 3 | 30 mm ≥ 10            | 0 mm      |     | h <sub>ef</sub> + 2·d <sub>0</sub> |     |
| Minimum spacing                 | Smin               | [mm] | 40                  | 50                    | 60        | 70  | 80                                 | 100 |
| Minimum edge distance           | Cmin               | [mm] | 40                  | 50                    | 60        | 70  | 80                                 | 100 |

a) both given values for drill bit diameter can be used

### Installation equipment

| Anchor size   | Ø8                                                 | Ø10     | Ø12       | Ø14           | Ø16 | Ø20 |  |  |
|---------------|----------------------------------------------------|---------|-----------|---------------|-----|-----|--|--|
| Determine     |                                                    | TE 40 - |           |               |     |     |  |  |
| Rotary hammer | TE 2(-A) – TE 30(-A)                               |         |           |               |     |     |  |  |
|               | Blow out pump (h <sub>ef</sub> ≤ 10·d) -           |         |           |               |     |     |  |  |
| Other tools   |                                                    |         | Compresse | ed air gun a) |     |     |  |  |
|               | Set of cleaning brushes b), dispenser, piston plug |         |           |               |     |     |  |  |

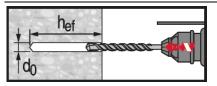
a) Compressed air gun with extension hose for all drill holes deeper than 250 mm (for  $\phi$  8 to  $\phi$  12) or deeper than 20- $\phi$  (for  $\phi$  > 12 mm). b) Automatic brushing with round brush for all drill holes deeper than 250 mm (for  $\phi$  8 to  $\phi$  12) or deeper than 20- $\phi$  (for  $\phi$  > 12 mm).

### Parameters of cleaning and setting tools

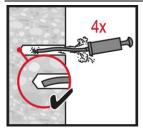
|             | Drilling an            | d cleaning             | Installation           |
|-------------|------------------------|------------------------|------------------------|
| Rebar size  | Hammer drilling        | Brush<br>HIT-RB        | Piston plug<br>HIT-SZ  |
|             | d₀ [mm]                | size [mm]              | size [mm]              |
| Z/Z/Z/Z/Z/Z |                        |                        |                        |
| Ø8          | 12 (10 <sup>a)</sup> ) | 12 (10 <sup>a)</sup> ) | 12 (10 a))             |
| Ø10         | 14 (12 <sup>a)</sup> ) | 14 (12 <sup>a)</sup> ) | 14 (12 <sup>a)</sup> ) |
| Ø12         | 16 (14 <sup>a)</sup> ) | 16 (14 <sup>a)</sup> ) | 16 (14 <sup>a)</sup> ) |
| Ø14         | 18                     | 18                     | 18                     |
| Ø16         | 20                     | 20                     | 20                     |
| Ø20         | 25                     | 25                     | 25                     |

a) both given values for drill bit diameter can be used

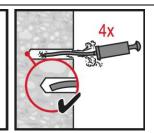



#### **Setting instructions**

\*For detailed information on installation see instruction for use given with the package of the product.



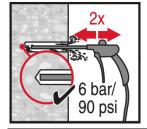

#### Safety regulations.


Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with Hilti HIT-RE 10

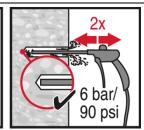


#### Hammer drilled hole (HD)

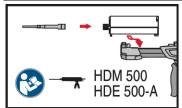






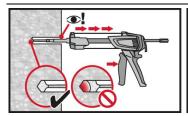


### Manual cleaning (MC)

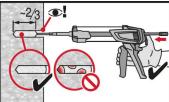
For element sizes d  $\leq$  16mm and embedment depth  $h_{ef} \leq$  10d only.


Brush bore hole with required steel brush HIT-RB.

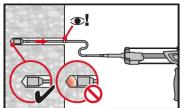


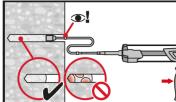




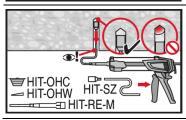


## Compressed air cleaning (CAC)

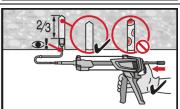






Injection system preparation.

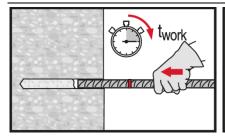


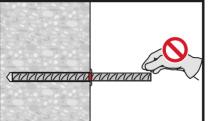




**Injection** method for drill hole depth  $h_{ef} \le 250$  mm.

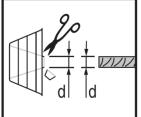


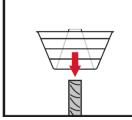


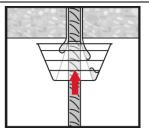

**Injection** method for drill hole depth  $h_{ef} > 250$ mm.

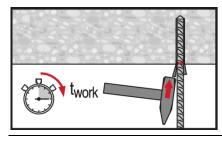


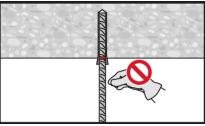




**Injection** method for overhead application.





**Setting element**, observe working time "twork".











**Setting element** for overhead applications, observe working time "twork".



## **HIT-RE 10 injection mortar**

Rebar design (EN 1992-1) / Rebar elements / Concrete

### Injection mortar system



Hilti HIT-RE 10 580 ml hard cartridges

Rebar B500 B  $(\phi 8 - \phi 20)$ 

#### **Benefits**

- Suitable for non-cracked concrete C20/25 to C50/60
- Suitable for dry and water saturated concrete
- Suitable for overhead fastenings

#### **Base material**



Concrete

(non-cracked)





Dry concrete

Wet concrete

**Load conditions** 



Static/ quasi-static

#### Installation conditions







Hammer Variable drilling embedment depth

#### Other information



Corrosion resistance tested

## Approvals / certificates

| Description             | Authority / Laboratory | No. / date of issue |
|-------------------------|------------------------|---------------------|
| Hilti Technical Data a) | Hilti                  | 2017-11-28          |

All data given in this section according to Hilti Technical Data



## Static and quasi-static loading

## Pre-calculated values<sup>1)</sup> – anchorage length

Rebar yield strength f<sub>yk</sub> =500 N/mm<sup>2</sup>, concrete C25/30, good bond conditions

| Rebar-size | Anchorage Design Mortar length value volume <sup>2)</sup> |                      | Overlap<br>length     | Design<br>value     | Mortar<br>volume <sup>2)</sup> |                       |
|------------|-----------------------------------------------------------|----------------------|-----------------------|---------------------|--------------------------------|-----------------------|
|            | I <sub>bd</sub> [mm]                                      | N <sub>Rd</sub> [kN] | V <sub>M</sub> [ml]   | I <sub>0</sub> [mm] | N <sub>Rd</sub> [kN]           | V <sub>M</sub> [ml]   |
|            | 150                                                       | 10,2                 | (6) <sup>3)</sup> 12  | 300                 | 20,4                           | (11) <sup>3)</sup> 23 |
| φ8         | 250                                                       | 17,0                 | (9) <sup>3)</sup> 19  | 310                 | 21,0                           | (11) <sup>3)</sup> 24 |
|            | 322                                                       | 21,9                 | (11) <sup>3)</sup> 24 | 322                 | 21,9                           | (11) <sup>3)</sup> 25 |
|            | 181                                                       | 15,4                 | (8)3) 17              | 300                 | 25,4                           | (13)3) 28             |
| φ10        | 310                                                       | 26,3                 | (13)3) 29             | 350                 | 29,7                           | (15) <sup>3)</sup> 32 |
|            | 403                                                       | 34,1                 | (17)3) 37             | 403                 | 34,1                           | (17)3) 37             |
|            | 217                                                       | 22,1                 | (11) <sup>3)</sup> 23 | 300                 | 30,5                           | (15) <sup>3)</sup> 32 |
| φ12        | 370                                                       | 37,7                 | (19)3) 40             | 400                 | 40,7                           | (20)3) 43             |
|            | 483                                                       | 49,2                 | (24)3) 51             | 483                 | 49,2                           | (24)3) 51             |
|            | 254                                                       | 30,1                 | 31                    | 315                 | 37,4                           | 39                    |
| φ14        | 350                                                       | 41,6                 | 43                    | 400                 | 47,5                           | 49                    |
|            | 500                                                       | 59,4                 | 61                    | 500                 | 59,4                           | 61                    |
|            | 290                                                       | 39,3                 | 40                    | 360                 | 48,9                           | 49                    |
| φ16        | 400                                                       | 54,3                 | 55                    | 400                 | 54,3                           | 55                    |
|            | 500                                                       | 67,9                 | 68                    | 500                 | 67,9                           | 68                    |
|            | 362                                                       | 61,5                 | 77                    | 450                 | 76,3                           | 96                    |
| φ20        | 420                                                       | 71,3                 | 90                    | 470                 | 79,7                           | 100                   |
|            | 500                                                       | 84,8                 | 107                   | 500                 | 84,8                           | 107                   |

<sup>1)</sup> Values italic letters correspond to the minimum anchorage length. The maximum permissible load (bold letters) is valid for "good bond conditions" as described in EN 1992-1-1. For all other conditions multiply by the value by 0,7.

<sup>2)</sup> Mortar volume according to the equation:  $1,2\cdot(d_0^2-d_s^2)\cdot\pi\cdot I_{bd/0}/4$ .

<sup>3)</sup> Value of mortar volume corresponds with minimal nominal diameter of drill bit (see table "Installation equipment").



#### **Materials**

## **Material quality**

| Designation               | Material                                                                                                                      |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Reinforcing bars (rebars) |                                                                                                                               |
| Rebar EN 1992-1-1         | Bars and de-coiled rods class B or C with fyk and k according to NDP or NCL of EN 1992-1-1 $f_{uk} = f_{tk} = k \cdot f_{yk}$ |

#### Fitness for use

Creep tests have been conducted in accordance with EAD 330087-00-0601 and TR 023 in the following conditions: in dry environment at 43 °C during 90 days.

These tests show an excellent behaviour of the post-installed connection made with HIT-RE 10: low displacements

**Durability of Hilti-RE 10 injection mortar:** 

| Condition             | Comment         | Resistance |  |
|-----------------------|-----------------|------------|--|
| Sulphurous atmosphere | 23°C            | +          |  |
| High alkalinity       | pH = 13,2, 23°C | +          |  |

#### Corrosion resistance of post-installed rebar:

Post-installed rebar connections made with Hilti-RE 10 injection mortar provide the same corrosion resistance as a cast-in-place rebar.

#### **Setting information**

## Installation temperature range:

+5°C to +40°C

#### Service temperature range

Hilti HIT-RE 10 injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

| Temperature range   | Base material temperature | Maximum long term base material temperature | Maximum short term base material temperature |
|---------------------|---------------------------|---------------------------------------------|----------------------------------------------|
| Temperature range I | -40 °C to +43 °C          | +20 °C                                      | +43 °C                                       |

#### Maximum short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

## Maximum long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

#### Working time and curing time a)

| Temperature of the base material | Maximum working time | Initial curing time      | Minimum curing time  |  |
|----------------------------------|----------------------|--------------------------|----------------------|--|
| Твм                              | t <sub>work</sub>    | t <sub>cure,ini</sub> a) | t <sub>cure</sub> a) |  |
| 5°C ≤ T <sub>BM</sub> ≤ 10°C     | 5 h                  | 30 h                     | 72 h                 |  |
| 10°C < T <sub>BM</sub> ≤ 15°C    | 2,5 h                | 20 h                     | 48 h                 |  |
| 15°C < T <sub>BM</sub> ≤ 20°C    | 2 h                  | 15 h                     | 36 h                 |  |
| 20°C < T <sub>BM</sub> ≤ 30°C    | 60 min               | 10 h                     | 24 h                 |  |
| 30°C < T <sub>BM</sub> ≤ 40°C    | 30 min               | 5 h                      | 12 h                 |  |

a) The curing time data are valid for dry anchorage base material only. For wet base materials the curing times must be doubled.



Installation equipment

| Rebar - size   | Ø8                                                | Ø10 | Ø12 | Ø14 | Ø16     | Ø20 |
|----------------|---------------------------------------------------|-----|-----|-----|---------|-----|
| Rotary hammer  | TE 2(-A) – TE 30(-A)                              |     |     |     | TE 40 – |     |
| Rotary naminer | TE 2(-A) - TE 30(-A)                              |     |     |     | TE 80   |     |
|                | Blow out pump (h <sub>ef</sub> ≤ 10·d) -          |     |     |     |         |     |
| Other tools    | Compressed air gun <sup>b)</sup>                  |     |     |     |         |     |
|                | Set of cleaning brushesc), dispenser, piston plug |     |     |     |         |     |

- a) Both given drill bit diameter can be used.
- b) Compressed air gun with extension hose for all drill holes deeper than 250 mm (for φ 8 to φ 12) or deeper than 20 φ (for φ > 12 mm).
- c) Automatic brushing with round brush for all drill holes deeper than 250 mm (for  $\dot{\phi}$  8 to  $\dot{\phi}$  12) or deeper than 20· $\dot{\phi}$  (for  $\dot{\phi}$  > 12 mm).

## Minimum concrete cover $c_{\text{min}}$ of the post-installed rebar

| Drilling mothed | Rebar – size [mm]     | Minimum concrete cover c <sub>min</sub> [mm] |                                        |  |  |
|-----------------|-----------------------|----------------------------------------------|----------------------------------------|--|--|
| Drilling method | Repai – Size [illili] | Without drilling aid                         | With drilling aid                      |  |  |
| Hammer drilling | φ < 25                | $30 + 0.06 \cdot I_{v} \ge 2 \cdot \phi$     | $30 + 0.02 \cdot l_v \ge 2 \cdot \phi$ |  |  |

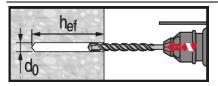
## Dispenser and corresponding maximum embedment depth $\ell_{\text{v,max}}$

| Pohar – sizo [mm] | Dispenser (HDM 500, HDE 500-A) |                     |
|-------------------|--------------------------------|---------------------|
| Rebar – size [mm] |                                | $\ell_{v,max}$ [mm] |
| ф8 - ф20          | 0                              | 500                 |

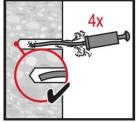
#### Parameters of cleaning and setting tools

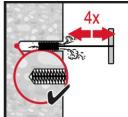
|            | Drilling an            | Installation           |                        |  |
|------------|------------------------|------------------------|------------------------|--|
| Rebar size | Hammer drilling        | Brush<br>HIT-RB        | Piston plug<br>HIT-SZ  |  |
|            | d₀ [mm]                | size [mm]              | size [mm]              |  |
| V212121212 |                        |                        |                        |  |
| Ø8         | 12 (10 <sup>a)</sup> ) | 12 (10 <sup>a)</sup> ) | 12 (10 <sup>a)</sup> ) |  |
| Ø10        | 14 (12 <sup>a)</sup> ) | 14 (12 <sup>a)</sup> ) | 14 (12 <sup>a)</sup> ) |  |
| Ø12        | 16 (14 <sup>a)</sup> ) | 16 (14 <sup>a)</sup> ) | 16 (14 <sup>a)</sup> ) |  |
| Ø14        | 18                     | 18                     | 18                     |  |
| Ø16        | 20                     | 20                     | 20                     |  |
| Ø20        | 25                     | 25                     | 25                     |  |

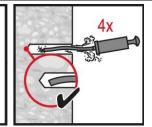



#### **Setting instructions**

## \*For detailed information on installation see instruction for use given with the package of the product.





#### Safety regulations.

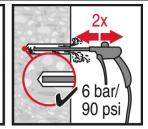

Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with Hilti HIT-RE 10.



#### Hammer drilled hole

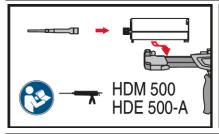






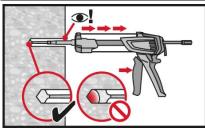

## Manual cleaning (MC)

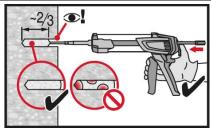
for drill diameters  $d_0 \le 20$  mm and drill hole depth  $h_0 \le 10$ ·d.



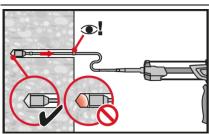


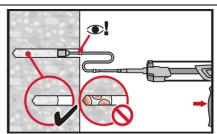




#### Compressed air cleaning (CAC)


for all drill hole diameters  $d_0$  and drill hole depths  $h_0 \le 20 \cdot d$ .

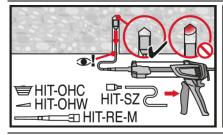


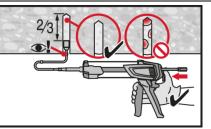




**Injection** system preparation.

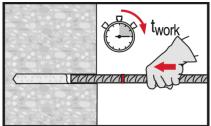


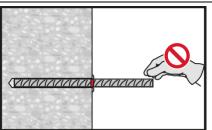



**Injection** method for drill hole depth  $h_{ef} \le 250$  mm.

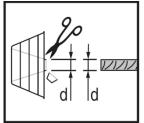






**Injection** method for drill hole depth hef > 250mm.

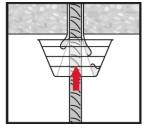


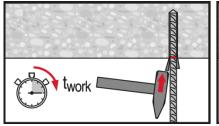


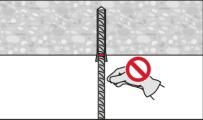





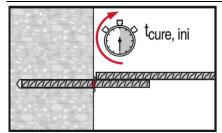
**Injection** method for overhead application.

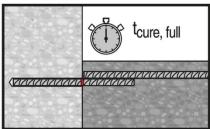




**Setting element**, observe working time "twork".










Setting element for overhead applications, observe working time " $t_{\text{work}}$ ".





Apply full load only after curing time "tcure".