

HST-3 EXPANSION ANCHOR

Technical Datasheet Update: May-19

HST3 Expansion anchor

Ultimate-performance expansion anchor for cracked concrete and seismic

Anchor versi	ion			Benefits				
Alle	****	nonego and have	нета	 Highest resis thickness, sh distances 	tance for reduced member ort spacing and edge			
			HST3-R (M8-M20)	- Increased un combination	dercut percentage in with optimized coating			
				 Suitable for n concrete 	on-cracked and cracked			
			HST3-BW	 Normal and li concrete com from 2,500 ps (58.6 MPa) 	ightweight concrete with pressive strength range si (17.2 MPa) to 8,500 psi			
			HST3-R-BW (M8-M24)	 Highly reliable and safe anchor for structural seismic design 				
		U		 Product and length identification mark facilitates quality control and inspection 				
Base materia	al		Load cond	litions				
Concrete (non-cracked)	Concrete (cracked)		Static/ quasi-static	Seismic	Fire resistance			
Installation c	onditions		Other info	rmation				
C			CE	FM APPROVED	UES®			
Hammer drilled holes	Diamond drilled holes	Hollow drill- bit drilling	CE conformity	FM approved	Uniform Evaluation Service			

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue			
Shock approval	FOCP, Zurich	BZS D 08-602 / 2016-08-17			
ACI 318 assessment	IAPMO UES, USA	ER-578 / 2019-28-02			

Data source

Technical data in this section is based on evaluation report ER-578 by IAPMO UES according to ACI 355.2 and ICC-ES AC193, except for the following - Diamond drilled holes, Hollow-drill bit, shallow embedment data for M10 to M16, Seismic filling set, and the -BW version.

Additional data for Diamond drilled holes, Hollow-drill bit, shallow embedment data for M10 to M16, Seismic filling set, and the -BW version, is based on technical assessment of testing done for ETA-98/0001 and evaluated by Hilti for designs in accordance with ACI 318-14 chapter 17. Published technical data is not contained in an external evaluation report (i.e. ICC-ES or IAPMO-UES) or other approval at this time, and can be used as Hilti Technical Data only.

Anchor performance

Design information for tension ^{a)} for HST3

Design parameter				N	lomina	l ancho	r diam	eter (m	m)	
Design parameter			M8	М	10	M	12	M	16	M20
Anchor O.D.	da	mm	8	1	0	1:	2	1	6	20
Effective min. embedment	h _{ef}	mm	47	40	60	50	70	65	85	101
Tension, steel failure modes				1	1		1			
Strength reduction factor for steel in tension ^{b)}	φsa,N					0.	.75			
Min. specified yield strength, threads	$\mathbf{f}_{ya,threads}$	N/mm ²	640	640 640 640		576		560		
Min. specified ult. strength, threads	$\mathbf{f}_{uta,threads}$	N/mm ²	800	80	00	80	00	72	20	700
Effective-cross sectional steel area in tension, threads	Ase,N,thrd	mm²	36.6	58	3.0	84	.3	15	7.0	245.0
Min. specified yield strength, neck	f ya,neck	N/mm ²	688	74	40	73	81	68	38	634
Min. specified ult. strength, neck	f _{uta,neck}	N/mm ²	800	86	60	85	50	80	00	740
Effective-cross sectional steel area in tension, neck	Ase,N,neck	mm²	24.6	37	7.8	53	.1	95	.0	167.9
Nominal steel strength in tension	Nsa	kN	19.7	32	2.5	45	.1	76	5.0	124.2
Tension, concrete failure modes				<u> </u>						
Anchor category							1			
Strength reduction factor for concrete failure in tension, Condition A ^{c)}	φς,Ν					0.	.75			
Strength reduction factor for concrete failure in tension, Condition B ^{c)}	фс,N					0.	.65			
Strength reduction factor for pullout failure in tension, Condition A and B ^{c)}	ф р,N					0.	.65			
Effectiveness factor for uncracked concrete	k _{uncr}		10.0	11.3	10.0	11.3	10.0	11.3	1	0.0
Effectiveness factor for cracked concrete	kcr		7.1	8.8		7.1		8.8	7.1	8.8
Modification factor for anchor resistance, tension, uncracked conc. ^{d)}	₩с,Ν		1.0							
Critical edge distance	Cac	mm	71	95	115	90	110	115	128	192
Pullout strength in uncracked concrete e)	N _{p,uncr}	kN	11.0	NA	NA	NA	NA	NA	NA	NA
Pullout strength in cracked concrete e)	N _{p,cr}	kN	8.5	NA	NA	NA	NA	NA	NA	NA
Pullout strength in cracked concrete, seismic ^{e)}	N _{p,eq}	kN	8.5	-	NA	-	NA	-	19.9	36.6

a) Design information in accordance with ACI 355.2-07 and AC193

b) The HST3 carbon steel anchor is considered a ductile steel element as defined by ICC-ES AC193 section 6.3.6.

c) For use with the load combinations of ACI 318-14 section 5.3. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 section 17.3.3 c) is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

d) For all design cases, $\psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked (k_{uncr}) concrete must be used.

e) For all design cases, $\psi_{c,P} = 1.0$. Tabular value for pullout strength is for a concrete compressive strength of 17.2 MPa. Pullout strength for concrete compressive strength greater than 17.2 MPa may be increased by multiplying the tabular pullout strength by $(f'_c / 17.2)^{0.5}$. NA (not applicable) denotes that pullout strength does not need to be considered for design.

Design information for shear ^{a)} for HST3

Decign peromotor	Nominal anchor diameter (mm)									
Design parameter			M8	M	10	M12		M16		M20
Anchor O.D.	da	mm	8	1	0	1	2	1	6	20
Effective min. embedment	h _{ef}	mm	47	40	60	50	70	65	85	101
Shear, steel failure modes										
Strength reduction factor for steel in shear ^{b)}	φsa,v					0	.65			
Nominal steel strength in shear ^{f)}	V_{sa}	kN	12.9	19.1	19.1	26.2	27.6	45.3	47.6	64.3
Nominal steel strength in shear, seismic ^{f)}	$V_{\text{sa,eq}}$	kN	11.5	-	19.1	-	24.9	-	43.1	64.3
Nominal steel strength in shear, w/ Seismic/Filling Set ^{f)}	V_{sa}	kN	16.6	-	25.8	-	39.0	-	60.9	100.4
Nominal steel strength in shear, seismic, w/ Seismic/Filling Set ^{f)}	$V_{\text{sa,eq}}$	kN	16.6	-	25.8	-	39.0	-	60.9	100.4
Shear, concrete failure modes										
Strength reduction factor for concrete breakout failure in shear, Condition A ^{c)}	φc,v					0	.75			
Strength reduction factor for concrete breakout failure in shear, Condition B ^{c)}	фс,V					0	.70			
Strength reduction factor for pryout failure in shear, Condition A and B ^{c)}	ф р,V		0.70							
Load bearing length of anchor in shear	le	mm	47	40	60	50	70	65	85	101
Effectiveness factor for pryout	k _{cp}	-	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0

f) Design information in accordance with ACI 355.2-07 and AC193

g) The HST3 carbon steel anchor is considered a ductile steel element as defined by ICC-ES AC193 section 6.3.6.

h) For use with the load combinations of ACI 318-14 section 5.3. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 section 17.3.3 c) is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

f) Shear and seismic shear tests are all performed in cracked concrete member according to ICC-ES AC193 section 9.4 and 9.6 respectively. Value of V_{sa(.eq)} < 0.6 A_{se,V} f_{uta} for all cases.

Design information for tension ^{a)} for HST3-R

Design narameter				Nominal anchor diameter (mm)								
Design parameter			M8	M	10	M	12	M 1	6	M20		
Anchor O.D.	da	mm	8	1	0	1:	2	10	ô	20		
Effective min. embedment	h _{ef}	mm	47	40	60	50	70	65	85	101		
Tension, steel failure modes												
Strength reduction factor for steel in tension ^{b)}	φsa,N					0.	.75					
Min. specified yield strength, threads	$\mathbf{f}_{ya,threads}$	N/mm ²	576 568		568		52	0	520			
Min. specified ult. strength, threads	futa,threads	N/mm ²	720	71	0	71	0	65	0	650		
Effective-cross sectional steel area in tension, threads	$A_{se,N,thrd}$	mm²	36.6	58	.0	84	.3	157	7 .0	245.0		
Min. specified yield strength, neck	f ya,neck	N/mm ²	619	65	54	68	88	62	8	593		
Min. specified ult. strength, neck	f _{uta,neck}	N/mm ²	720	76	60	80	0	73	0	690		
Effective-cross sectional steel area in tension, neck	$A_{se,N,neck}$	mm²	24.6	37	.8	53	.1	95	.0	167.9		
Nominal steel strength in tension	N _{sa}	kN	17.7	28	.7	42.5		5 69.		115.8		
Tension, concrete failure modes						-						
Anchor category							1					
Strength reduction factor for concrete failure in tension, Condition A ^{c)}	фс,N					0.	.75					
Strength reduction factor for concrete failure in tension, Condition B ^{c)}	фс,N					0.	.65					
Strength reduction factor for pullout failure in tension, Condition A and B ^{c)}	фр,N					0.	.65					
Effectiveness factor for uncracked concrete	kuncr		10.0	11.3	10.0	11.3	10.0	11.3	1(0.0		
Effectiveness factor for cracked concrete	kcr		7.1	8.8		7.1		8.8	7.1	8.8		
Modification factor for anchor resistance, tension, uncracked conc. ^{d)}	Ψc,N		1.0									
Critical edge distance	Cac	mm	71	95	115	90	110	115	128	192		
Pullout strength in uncracked concrete e)	N _{p,uncr}	kN	11.0	NA	NA	NA	NA	NA	NA	NA		
Pullout strength in cracked concrete e)	N _{p,cr}	kN	8.5	NA	NA	NA	NA	NA	NA	NA		
Pullout strength in cracked concrete, seismic ^{e)}	$N_{p,eq}$	kN	8.5	-	NA	-	NA	-	19.9	36.6		

a) Design information in accordance with ACI 355.2-07 and AC193

b) The HST3 carbon steel anchor is considered a ductile steel element as defined by ICC-ES AC193 section 6.3.6.

c) For use with the load combinations of ACI 318-14 section 5.3. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 section 17.3.3 c) is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

d) For all design cases, $\psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{cr}) or uncracked (k_{uncr}) concrete must be used.

e) For all design cases, ψ_{c,P} = 1.0. Tabular value for pullout strength is for a concrete compressive strength of 17.2 MPa. Pullout strength for concrete compressive strength greater than 17.2 MPa may be increased by multiplying the tabular pullout strength by (f'_c / 17.2)^{0.5}. NA (not applicable) denotes that pullout strength does not need to be considered for design.

Design information for shear ^{a)} for HST3-R

Design noromotor				Nominal anchor diameter (mm)								
Design parameter			M8	M	10	M	12	M	16	M20		
Anchor O.D.	da	mm	8	1	0	1	2	1	6	20		
Effective min. embedment	h _{ef}	mm	47	40	60	50	70	65	85	101		
Shear, steel failure modes				-				-				
Strength reduction factor for steel in shear ^{b)}	∮sa,V					0	.65					
Nominal steel strength in shear ^{f)}	V_{sa}	kN	10.1	23.1	24.4	27.9	28.9	44.1	61.2	79.2		
Nominal steel strength in shear, seismic ^{f)}	V _{sa,eq}	kN	9.8	-	22.1	-	28.9	-	60.7	51.5		
Nominal steel strength in shear, w/ Seismic/Filling Set ^{f)}	V _{sa}	kN	19.5	-	28.4	-	44.3	-	70.2	102.7		
Nominal steel strength in shear, seismic, w/ Seismic/Filling Set ^{f)}	$V_{\text{sa,eq}}$	kN	19.5	-	28.4	-	44.3	-	70.2	102.7		
Shear, concrete failure modes												
Strength reduction factor for concrete breakout failure in shear, Condition A ^{c)}	φc,v					0	.75					
Strength reduction factor for concrete breakout failure in shear, Condition B ^{c)}	φ _{c,V}					0	.70					
Strength reduction factor for pryout failure in shear, Condition A and B ^{c)}	ф _{р,V}		0.70									
Load bearing length of anchor in shear	le	mm	47	40	60	50	70	65	85	101		
Effectiveness factor for pryout	kcp	-	1.0	1.0	1.0	1.0	2.0	2.0	2.0	2.0		

f) Design information in accordance with ACI 355.2-07 and AC193

g) The HST3 carbon steel anchor is considered a ductile steel element as defined by ICC-ES AC193 section 6.3.6.

 For use with the load combinations of ACI 318-14 section 5.3. Condition B applies where supplementary reinforcement in conformance with ACI 318-14 section 17.3.3 c) is not provided, or where pullout or pryout strength governs. For cases where the presence of supplementary reinforcement can be verified, the resistance modification factors associated with Condition A may be used.

f) Shear and seismic shear tests are all performed in cracked concrete member according to ICC-ES AC193 section 9.4 and 9.6 respectively. Value of V_{sa(.eq)} < 0.6 A_{se,V} f_{uta} for all cases.

Materials

Mechanical properties

Anchor size		M8	M10	M12	M16	M20	
Nominal tensile	HST3/HST3-BW	[Nl/mm2]	800	800	800	720	700
strength fuk,thread	HST3-R/HST3-R-BW	- [[N/11111-]	720	710	710	650	650
Yield strength	HST3/HST3-BW	_	640	640	640	576	560
f _{yk,thread}	HST3-R/HST3-R-BW	[N/mm²]	576	568	568	520	520
Stressed cross-se	ction As	[mm²]	36,6	58,0	84,3	157	245
Moment of resista	nce W	[mm³]	31,2	62,3	109	277	541
Char, bending	HST3/HST3-BW	[NIm]	30	60	105	240	457
resistance M ⁰ Rk,s	HST3-R/HST3-R-BW	- [[N][]	27	53	93	216	425

Material quality

Part		Material					
Expansion	HST3/HST3-BW	M10, M16: Galvanized or Stainless steel M8, M12, M20 Stainless steel					
Sleeve	HST3-R/HST3-R-BW	Srainless steel A4					
Rolt	HST3/HST3-BW	Carbon steel, galvanized, coated (transparent)					
BUIL	HST3-R/HST3-R-BW	Stainless steel A4, cone coated (transparent)					
Washer	HST3/HST3-BW	Galvanized					
VVaShei	HST3-R/HST3-R-BW	Stainless steel A4					
	HST3/HST3-BW	Strength class 8					
пехадоп пис	HST3-R/HST3-R-BW	Stainless steel A4, coated					

Anchor dimensions of HST3, HST3-R

Anchor size			M8	M10	M12	M16	M20
Maximum length of anchor	ℓ _{max} ≤	[mm]	260	280	350	475	450
Shaft diameter at the cone	dR	[mm]	5,60	6,94	8,22	11,00	14,62
Length of expansion sleeve	ls	[mm]	13,6	16,0	20,0	25,0	28,3
Diameter of washer	d _w ≥	[mm]	5.60	6.94	8.22	11.00	14.62

Setting information

Setting details

Setting information			Nominal anchor diameter (mm)								
Setting mornation			M8	M	M10		M12		16	M20	
Nominal drill bit diameter	do	mm	8	8 10		12		16		20	
Effective minimum embedment	h _{ef}	mm	47	40	60	50	70	65	85	101	
Nominal minimum embedment	h _{nom}	mm	54	48	68	60	80	78	98	116	
Minimum hole depth in concrete ^{a)}	h₁	mm	59	53	73	68	88	86	10 6	124	
Fixture hole diameter	df	mm	9	1	2	14		18		22	
Maximum thickness of fixture	t _{fix,max}	mm	195	22	20	27	70	370		310	
Installation torque	Tinst	Nm	20	4	5	6	0	11	10	180	
Length of expansion sleeve	ls	mm	13.6	16	6.0	20	0.0	25	5.0	28.3	
Diameter of washer	d _₩ ≥	mm	5.60	6.	94	8.	22	11.	.00	14.62	
Width across flats of nut	Sw	mm	13	1	7	1	9	2	4	30	

a) When diamond core drilling is used, add 5mm to h_1 for M8 and M10, and add 2mm to h_1 for M12 to M20.

Installation equipment

Anchor size	M8	M10	M12	M16	M20					
Potary hammer	ΤΕ40 -									
		T L Z (-A) =	1L30(-A)		TE80					
Diamond coving tool	DD EC-1 coring tool with DD-C TS/TL or T2/T4 core bits									
Diamond coring tool	DD 30-W coring tool with C+ SPX-T core bits									
Setting tool	Hilti S7W	6AT 22A – S	SI-AT-A22		-					
Hollow drill bit	- TE-CD, TE-YD									
Other tools	hammer, torque wrench, blow out pump									

Setting parameters a)

Anchor size			M8	M10	M12	M16	M20
Effective minimum embedment	hef	mm	-	40	50	65	-
Minimum concrete thickness	hmin	mm	-	80	100	120	-
HST3 and HST3-R							
	Cmin	mm	-	50	60	65	-
Minimum edge distance	for s <u>></u>	mm	-	190	215	240	-
	Smin	mm	-	50	55	75	-
Minimum anchor spacing	for c <u>></u>	mm	-	95	110	140	-
Effective minimum embedment	h _{ef, min}	mm	47	60	70	85	101
Minimum concrete thickness	h _{min}	mm	80	100	120	140	160
HST3							
	Cmin	mm	40	60	60	65	120
Minimum edge distance	for s <u>></u>	mm	65	90	155	185	180
	Smin	mm	35	40	50	80	120
Minimum anchor spacing	for c >	mm	55	100	115	135	180
HST3-R							
	Cmin	mm	40	60	60	65	120
Minimum edge distance	for s <u>></u>	mm	80	90	155	185	180
	Smin	mm	35	40	50	80	120
Minimum anchor spacing	for c >	mm	70	100	115	135	180
Effective minimum embedment	h _{ef, min}	mm	47	60	70	85	101
Minimum concrete thickness	h _{min}	mm	100	120	140	160	200
HST3							
	Cmin	mm	40	50	55	65	80
Minimum edge distance	for s <u>></u>	mm	75	150	135	175	195
	Smin	mm	35	40	60	65	90
Minimum anchor spacing	for c >	mm	60	70	80	105	130
HST3-R							
	Cmin	mm	40	50	55	65	80
winimum eage distance	for s <u>></u>	mm	50	105	110	175	180
	Smin	mm	35	40	60	65	90
winimum anchor spacing	for c <u>></u>	mm	50	70	70	105	130

 a) Linear interpolation for c_{min} and s_{min} is permitted.
 For spacing (edge distance) smaller than critical spacing (critical edge distance) the design loads have to be reduced.

Setting instructions

*For detailed information on installation see instruction for use given with the package of the product Setting instruction for HST3, HST3-R Hammer drilling (M8, M10, M12, M16, M20) Drill the hole 2. Clean the hole 1. Use a setting tool HS-SC 3. Insert the anchor 4. HS-SC Checking 5. 6.a Attach the belonging washer NΠ TIT 6.b Attach the belonging washer with screw driver (M8, M10, M12) SIV. SI-AT A22 Hollow Drill Bit (M16, M20), no cleaning required Drill the hole with the Hollow drill bit 1. 2. Insert the anchor ED Use a setting tool HS-SC 3. 4. Checking HS-SC HAD 5.a Attach the belonging washer 5.b Attach the belonging washer with screw driver (M8, M10, M12) 111111 inst SI-AT A22

